论文标题

代数3D图形静态:相互构造

Algebraic 3D Graphic Statics: reciprocal constructions

论文作者

Hablicsek, Márton, Akbarzadeh, Masoud, Guo, Yi

论文摘要

最近开发的3D图形静态(3DGS)缺乏严格的数学定义,该定义与相互的多面体图的几何和拓扑特性以及这些图的几何结构的精确方法。本文通过在原始图的边缘上开发平衡方程,并通过双重/互偏图中相应面的边缘构成的多边形的紧密度来满足3DG的基本代数配方。该研究提供了多种数值方法来解决平衡方程,并解释了使用每种技术的优势。本文的方法可用于压缩和张紧的组合形式调查和分析,因为它允许根据输入图的解释来构建形式和力图。此外,该论文在使用代数公式的(in)确定性的(in)决定性的几何/静态度上进行了扩展,并显示了如何将这些特性用于在交互环境中对多面体的约束操纵,而不会在两者之间破坏互惠性。

The recently developed 3D graphic statics (3DGS) lacks a rigorous mathematical definition relating the geometrical and topological properties of the reciprocal polyhedral diagrams as well as a precise method for the geometric construction of these diagrams. This paper provides a fundamental algebraic formulation for 3DGS by developing equilibrium equations around the edges of the primal diagram and satisfying the equations by the closeness of the polygons constructed by the edges of the corresponding faces in the dual/reciprocal diagram. The research provides multiple numerical methods for solving the equilibrium equations and explains the advantage of using each technique. The approach of this paper can be used for compression-and-tension combined form-finding and analysis as it allows constructing both the form and force diagram based on the interpretation of the input diagram. Besides, the paper expands on the geometric/static degrees of (in)determinacies of the diagrams using the algebraic formulation and shows how these properties can be used for the constrained manipulation of the polyhedrons in an interactive environment without breaking the reciprocity between the two.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源