论文标题
具有非lipschitz系数的SDE的隐式米尔斯坦类型方法的平均趋同收敛速率
Mean-square convergence rates of implicit Milstein type methods for SDEs with non-Lipschitz coefficients
论文作者
论文摘要
在本文中引入和分析了一类隐式米尔斯坦类型方法,用于具有非全球Lipschitz漂移和扩散系数的随机微分方程(SDE)。通过将[0,1] $ in [0,1] $中的两对方法参数纳入漂移和扩散零件中,新方案确实是一种漂移 - 扩散双隐式方法。在一般框架中,我们基于某些错误项仅参与确切的解决方案过程,为提出的方案提供了上层均方误差界。此类误差界限有助于我们轻松地分析方案的均方体收敛速率,而无需依赖于数值近似值的先验高阶时刻估计。为了进一步的全球多项式生长条件,我们成功地恢复了以$θ\在[\ tfrac12,1]中的$θ\ [0,1] $中的$θ\ in [0,1] $的预期均方一体收敛率。同样,某些提出的方案被应用于求解在正域$(0,\ infty)$中进化的三种SDE模型。更具体地说,使用特定的漂移扩散隐式米尔斯坦方法($θ=η= 1 $)可用于近似于Heston $ \ tfrac32 $ - Volationility模型和随机Lotka-Volterra竞争模型。半幅度米尔斯坦方法($θ= 1,η= 0 $)用于解决AIT-Sahalia利率模型。由于先前获得的误差界限,我们揭示了与文献中现有的相关结果相比,在更轻松的条件下,在更轻松的条件下保留阳性方案的最佳均方体收敛率。还报告了数值示例以确认先前的发现。
A class of implicit Milstein type methods is introduced and analyzed in the present article for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. By incorporating a pair of method parameters $θ, η\in [0, 1]$ into both the drift and diffusion parts, the new schemes are indeed a kind of drift-diffusion double implicit methods. Within a general framework, we offer upper mean-square error bounds for the proposed schemes, based on certain error terms only getting involved with the exact solution processes. Such error bounds help us to easily analyze mean-square convergence rates of the schemes, without relying on a priori high-order moment estimates of numerical approximations. Putting further globally polynomial growth condition, we successfully recover the expected mean-square convergence rate of order one for the considered schemes with $θ\in [\tfrac12, 1], η\in [0, 1]$. Also, some of the proposed schemes are applied to solve three SDE models evolving in the positive domain $(0, \infty)$. More specifically, the particular drift-diffusion implicit Milstein method ($ θ= η= 1 $) is utilized to approximate the Heston $\tfrac32$-volatility model and the stochastic Lotka-Volterra competition model. The semi-implicit Milstein method ($θ=1, η= 0$) is used to solve the Ait-Sahalia interest rate model. Thanks to the previously obtained error bounds, we reveal the optimal mean-square convergence rate of the positivity preserving schemes under more relaxed conditions, compared with existing relevant results in the literature. Numerical examples are also reported to confirm the previous findings.