论文标题

具有非lipschitz系数的SDE的隐式米尔斯坦类型方法的平均趋同收敛速率

Mean-square convergence rates of implicit Milstein type methods for SDEs with non-Lipschitz coefficients

论文作者

Wang, Xiaojie

论文摘要

在本文中引入和分析了一类隐式米尔斯坦类型方法,用于具有非全球Lipschitz漂移和扩散系数的随机微分方程(SDE)。通过将[0,1] $ in [0,1] $中的两对方法参数纳入漂移和扩散零件中,新方案确实是一种漂移 - 扩散双隐式方法。在一般框架中,我们基于某些错误项仅参与确切的解决方案过程,为提出的方案提供了上层均方误差界。此类误差界限有助于我们轻松地分析方案的均方体收敛速率,而无需依赖于数值近似值的先验高阶时刻估计。为了进一步的全球多项式生长条件,我们成功地恢复了以$θ\在[\ tfrac12,1]中的$θ\ [0,1] $中的$θ\ in [0,1] $的预期均方一体收敛率。同样,某些提出的方案被应用于求解在正域$(0,\ infty)$中进化的三种SDE模型。更具体地说,使用特定的漂移扩散隐式米尔斯坦方法($θ=η= 1 $)可用于近似于Heston $ \ tfrac32 $ - Volationility模型和随机Lotka-Volterra竞争模型。半幅度米尔斯坦方法($θ= 1,η= 0 $)用于解决AIT-Sahalia利率模型。由于先前获得的误差界限,我们揭示了与文献中现有的相关结果相比,在更轻松的条件下,在更轻松的条件下保留阳性方案的最佳均方体收敛率。还报告了数值示例以确认先前的发现。

A class of implicit Milstein type methods is introduced and analyzed in the present article for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. By incorporating a pair of method parameters $θ, η\in [0, 1]$ into both the drift and diffusion parts, the new schemes are indeed a kind of drift-diffusion double implicit methods. Within a general framework, we offer upper mean-square error bounds for the proposed schemes, based on certain error terms only getting involved with the exact solution processes. Such error bounds help us to easily analyze mean-square convergence rates of the schemes, without relying on a priori high-order moment estimates of numerical approximations. Putting further globally polynomial growth condition, we successfully recover the expected mean-square convergence rate of order one for the considered schemes with $θ\in [\tfrac12, 1], η\in [0, 1]$. Also, some of the proposed schemes are applied to solve three SDE models evolving in the positive domain $(0, \infty)$. More specifically, the particular drift-diffusion implicit Milstein method ($ θ= η= 1 $) is utilized to approximate the Heston $\tfrac32$-volatility model and the stochastic Lotka-Volterra competition model. The semi-implicit Milstein method ($θ=1, η= 0$) is used to solve the Ait-Sahalia interest rate model. Thanks to the previously obtained error bounds, we reveal the optimal mean-square convergence rate of the positivity preserving schemes under more relaxed conditions, compared with existing relevant results in the literature. Numerical examples are also reported to confirm the previous findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源