论文标题
使用条件可逆神经网络解决反问题
Solving inverse problems using conditional invertible neural networks
论文作者
论文摘要
从间接稀疏和嘈杂的观察中计算高维空间变化的性质场的反向建模是一个具有挑战性的问题。这是由于经常以多尺度PDE的形式表达的复杂的物理系统,感兴趣的空间特性的高维度以及观察值的不完整和嘈杂性。为了应对这些挑战,我们开发了一个模型,该模型以替代模型的形式映射给未知输入字段。然后,这种反替代模型将使我们能够为任何给定的稀疏和嘈杂的输出观测值估算未知输入字段。在这里,逆映射仅限于对替代模型进行训练的输入字段的广泛分布。在这项工作中,我们构建了一个二维逆替代模型,该模型由可逆的和有条件的神经网络组成,该网络以有限的培训数据进行了端到端的方式训练。可逆网络是使用基于流的生成模型开发的。然后,将开发的逆替代模型应用于多相流问题的反转任务,在鉴于压力和饱和度观察的情况下,目的是恢复高维的非高斯渗透性场,其中这两个相由异质渗透性和不同的长度尺度组成。对于二维和三维替代模型,非高斯渗透率领域的预测样本实现是多种多样的,即使在模型经过有限的数据训练时,预测平均值也接近地面真相。
Inverse modeling for computing a high-dimensional spatially-varying property field from indirect sparse and noisy observations is a challenging problem. This is due to the complex physical system of interest often expressed in the form of multiscale PDEs, the high-dimensionality of the spatial property of interest, and the incomplete and noisy nature of observations. To address these challenges, we develop a model that maps the given observations to the unknown input field in the form of a surrogate model. This inverse surrogate model will then allow us to estimate the unknown input field for any given sparse and noisy output observations. Here, the inverse mapping is limited to a broad prior distribution of the input field with which the surrogate model is trained. In this work, we construct a two- and three-dimensional inverse surrogate models consisting of an invertible and a conditional neural network trained in an end-to-end fashion with limited training data. The invertible network is developed using a flow-based generative model. The developed inverse surrogate model is then applied for an inversion task of a multiphase flow problem where given the pressure and saturation observations the aim is to recover a high-dimensional non-Gaussian permeability field where the two facies consist of heterogeneous permeability and varying length-scales. For both the two- and three-dimensional surrogate models, the predicted sample realizations of the non-Gaussian permeability field are diverse with the predictive mean being close to the ground truth even when the model is trained with limited data.