论文标题

二进制层次模型的广义切割多型

Generalized Cut Polytopes for Binary Hierarchical Models

论文作者

Coons, Jane Ivy, Cummings, Joseph, Hollering, Benjamin, Maraj, Aida

论文摘要

边缘多型是在统计数据中出现的重要几何对象,作为层次层次对数线性模型的多型物体。这些多面体可用于回答有关这些模型的几何问题,例如确定最大似然估计的存在或相关半群的正态性。在层次模型是图形的情况下,剪切的图形对分析二元边缘多面有很有用。我们引入了通过广义简单复合物通过广义协方差图的二进制边缘多层二元边缘多物质引入的广义切割多层。该多层层在其环境空间中是全尺寸的,并且其方面之间具有自然的切换操作,可用于推断相关和二进制边缘多型的方面之间的对称性。我们发现,对于一些重要的简单复合物系列的普遍剪切多层的H-代表。我们还在某些情况下计算了这些多面体的体积。

Marginal polytopes are important geometric objects that arise in statistics as the polytopes underlying hierarchical log-linear models. These polytopes can be used to answer geometric questions about these models, such as determining the existence of maximum likelihood estimates or the normality of the associated semigroup. Cut polytopes of graphs have been useful in analyzing binary marginal polytopes in the case where the simplicial complex underlying the hierarchical model is a graph. We introduce a generalized cut polytope that is isomorphic to the binary marginal polytope of an arbitrary simplicial complex via a generalized covariance map. This polytope is full dimensional in its ambient space and has a natural switching operation among its facets that can be used to deduce symmetries between the facets of the correlation and binary marginal polytopes. We find complete H-representations of the generalized cut polytope for some important families of simplicial complexes. We also compute the volume of these polytopes in some instances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源