论文标题

什么是GT-Shadows?

What are GT-shadows?

论文作者

Dolgushev, Vasily A., Le, Khanh Q., Lorenz, Aidan A.

论文摘要

令$ b_4 $(分别为$ pb_4 $)为4个链的辫子组(纯辫子组),$ nfi_ {pb_4}(b_4)$是poset,其对象是$ pb_4 $中包含的$ b_4 $的对象的$ b_4 $的poset。在本文中,我们介绍了GT-Shadows,可以将其视为“近似值”,以介绍Grothendieck-Teichmueller Group的Profinite版本$ \ widehat {gt} $(参见V. Drinfeld,Elgebra I Analiz,1990年)。我们证明gt-shadows形成了一个groupoid,其对象是$ nfi_ {pb_4}(b_4)$的元素。我们表明,来自$ \ widehat {gt} $元素的gt-shadows满足了各种其他属性,我们研究了这些属性。我们在GT-Shadows和Group $ \ wideHat {gt} $之间建立了一个明确的链接(请参阅Theorem 3.8)。我们还介绍了GT-Shadows上计算机实验的选定结果。在本文的附录中,我们对Abe​​lian环境中的GT-Shadows进行了完整的描述。我们还证明,在Abelian设置中,每个GT阴影都来自$ \ wideHat {gt} $的元素。 D. Harbater和L. Schneps在1997年的一篇论文中引入了与GT-Shadows非常相似的对象。

Let $B_4$ (resp. $PB_4$) be the braid group (resp. the pure braid group) on 4 strands and $NFI_{PB_4}(B_4)$ be the poset whose objects are finite index normal subgroups of $B_4$ that are contained in $PB_4$. In this paper, we introduce GT-shadows which may be thought of as "approximations" to elements of the profinite version $\widehat{GT}$ of the Grothendieck-Teichmueller group (see V. Drinfeld, Algebra i Analiz, 1990). We prove that GT-shadows form a groupoid whose objects are elements of $NFI_{PB_4}(B_4)$. We show that GT-shadows coming from elements of $\widehat{GT}$ satisfy various additional properties and we investigate these properties. We establish an explicit link between GT-shadows and the group $\widehat{GT}$ (see Theorem 3.8). We also present selected results of computer experiments on GT-shadows. In the appendix of this paper, we give a complete description of GT-shadows in the Abelian setting. We also prove that, in the Abelian setting, every GT-shadow comes from an element of $\widehat{GT}$. Objects very similar to GT-shadows were introduced in a paper by D. Harbater and L. Schneps in 1997. A variation of the concept of $GT$-shadows for the coarse version of $\widehat{GT}$ was studied in papers by P. Guillot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源