论文标题

与边界的协变相空间方法的几何公式

Geometric formulation of the Covariant Phase Space methods with boundaries

论文作者

Margalef-Bentabol, Juan, Villaseñor, Eduardo J. S.

论文摘要

我们全面分析了在边界时时空定义的任何局部场理论的协变相空间(CPS)的几何结构。为此,我们介绍了一个新框架:“相对双色框架”。这是合并“相对框架”的扩展版本的结果(最初是在1980年代由R.〜bott和L.W. tu的代数拓扑的背景下开发的),以处理边界)和各种双学位框架(用于各种计算的差异几何体现)。相对双色框架是与边界贡献(包括角贡献)处理场理论的自然框架。实际上,我们证明了具有边界的理论的相对版本与没有边界的相同理论的非相关版本之间的形式等价。有了这些工具,我们将理论解决方案的空间赋予了与动作相关联的(前)符号结构,并且通常具有边界贡献。我们还研究了理论和构造的对称性,对于其中的一大批,它们的水流和指控。此外,我们完全表征了这些结构的任意性(或缺乏纤维束的任意性)。这阐明了关于边界项在田间理论的CPS描述中的作用的许多误解。最后,我们提供所谓的CPS-Algorithm来构建上述(前)符号结构,并将其应用于一些相关示例。

We analyze in full-detail the geometric structure of the covariant phase space (CPS) of any local field theory defined over a space-time with boundary. To this end, we introduce a new frame: the "relative bicomplex framework". It is the result of merging an extended version of the "relative framework" (initially developed in the context of algebraic topology by R.~Bott and L.W.~Tu in the 1980s to deal with boundaries) and the variational bicomplex framework (the differential geometric arena for the variational calculus). The relative bicomplex framework is the natural one to deal with field theories with boundary contributions, including corner contributions. In fact, we prove a formal equivalence between the relative version of a theory with boundary and the non-relative version of the same theory with no boundary. With these tools at hand, we endow the space of solutions of the theory with a (pre)symplectic structure canonically associated with the action and which, in general, has boundary contributions. We also study the symmetries of the theory and construct, for a large group of them, their Noether currents, and charges. Moreover, we completely characterize the arbitrariness (or lack thereof for fiber bundles with contractible fibers) of these constructions. This clarifies many misconceptions about the role of the boundary terms in the CPS description of a field theory. Finally, we provide what we call the CPS-algorithm to construct the aforementioned (pre)symplectic structure and apply it to some relevant examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源