论文标题
CASPR:学习规范时空点云表示
CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations
论文作者
论文摘要
我们提出了CASPR,这是一种学习以对象为中心的规范时空点云表示的方法。我们的目标是随着时间的推移启用信息聚集,并在过去是否观察到的任何时空社区中对物体状态进行审问。与以前的工作不同,CASPR学习了支持时空连续性的表示形式,对可变和不规则的时空采样点云具有鲁棒性,并概括了看不见的对象实例。我们的方法将问题分为两个子任务。首先,我们通过将输入点云序列映射到时空化的对象空间来明确编码时间。然后,我们利用这种规范化来学习使用神经普通微分方程的时空潜在表示,并使用连续归一化的流量进行动态发展形状的生成模型。我们证明了我们的方法对几种应用的有效性,包括形状重建,摄像头姿势估计,连续时空序列重建以及对不规则或间歇性采样观测值的对应估计。
We propose CaSPR, a method to learn object-centric Canonical Spatiotemporal Point Cloud Representations of dynamically moving or evolving objects. Our goal is to enable information aggregation over time and the interrogation of object state at any spatiotemporal neighborhood in the past, observed or not. Different from previous work, CaSPR learns representations that support spacetime continuity, are robust to variable and irregularly spacetime-sampled point clouds, and generalize to unseen object instances. Our approach divides the problem into two subtasks. First, we explicitly encode time by mapping an input point cloud sequence to a spatiotemporally-canonicalized object space. We then leverage this canonicalization to learn a spatiotemporal latent representation using neural ordinary differential equations and a generative model of dynamically evolving shapes using continuous normalizing flows. We demonstrate the effectiveness of our method on several applications including shape reconstruction, camera pose estimation, continuous spatiotemporal sequence reconstruction, and correspondence estimation from irregularly or intermittently sampled observations.