论文标题

忘记LIDAR:具有MED概率量的自制深度估计器

Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes

论文作者

Gonzalez, Juan Luis, Kim, Munchurl

论文摘要

自我监督的深度估计量最近显示了与挑战性的单像深度估计(侧)任务的监督方法相当的结果,它通过利用培训数据中的目标和参考视图之间的几何关系。但是,以前的方法通常学习前向或向后图像合成,而不是深度估计,因为它们无法有效地忽略目标和参考图像之间的阻塞。以前的工作依靠刚性光度假设或侧网络来推断深度和遮挡,从而导致性能有限。另一方面,我们提出了一种方法来“忘记LIDAR”(FAL),以训练深度估计器,并具有镜像的指数差异(MED)概率量,我们从中获得了带有新型镜像闭塞模块(MOM)的几何启发的闭塞图。我们的妈妈不会对我们的Fal-Net施加负担。与以前从立体声对通过线性空间中的差异来学习侧面的方法相反,我们的FAL-NET通过将差异固定到指数空间来回归差异,从而可以更好地检测遥远的物体和附近的物体。我们为我们的FAL-NET定义了两步训练策略:它首先是培训以进行视图合成的,然后对妈妈进行了微调以进行深度估算。我们的FAL-NET非常轻巧,并且优于先前的最先进方法,该方法的参数减少了8倍,而在具有挑战性的Kitti数据集上的推理速度更快。我们对Kitti,CityScapes和Make3D数据集提出了广泛的实验结果,以验证我们方法的有效性。据作者的最佳知识而言,到目前为止,提出的方法在所有以前的自我监督方法中都表现出了最好的作用。

Self-supervised depth estimators have recently shown results comparable to the supervised methods on the challenging single image depth estimation (SIDE) task, by exploiting the geometrical relations between target and reference views in the training data. However, previous methods usually learn forward or backward image synthesis, but not depth estimation, as they cannot effectively neglect occlusions between the target and the reference images. Previous works rely on rigid photometric assumptions or the SIDE network to infer depth and occlusions, resulting in limited performance. On the other hand, we propose a method to "Forget About the LiDAR" (FAL), for the training of depth estimators, with Mirrored Exponential Disparity (MED) probability volumes, from which we obtain geometrically inspired occlusion maps with our novel Mirrored Occlusion Module (MOM). Our MOM does not impose a burden on our FAL-net. Contrary to the previous methods that learn SIDE from stereo pairs by regressing disparity in the linear space, our FAL-net regresses disparity by binning it into the exponential space, which allows for better detection of distant and nearby objects. We define a two-step training strategy for our FAL-net: It is first trained for view synthesis and then fine-tuned for depth estimation with our MOM. Our FAL-net is remarkably light-weight and outperforms the previous state-of-the-art methods with 8x fewer parameters and 3x faster inference speeds on the challenging KITTI dataset. We present extensive experimental results on the KITTI, CityScapes, and Make3D datasets to verify our method's effectiveness. To the authors' best knowledge, the presented method performs the best among all the previous self-supervised methods until now.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源