论文标题
使用基于物理的灰色复发神经网络进行剩余生成发动机故障诊断
Residual Generation Using Physically-Based Grey-Box Recurrent Neural Networks For Engine Fault Diagnosis
论文作者
论文摘要
数据驱动的故障诊断因未知的故障类别和来自不同故障实现的训练数据而变得复杂。在这些情况下,常规的多类分类方法不适合故障诊断。一种解决方案是使用仅使用名义数据训练的异常分类器。异常分类器可用于检测何时发生故障,但很少提供有关其根本原因的信息。混合故障诊断方法结合了基于物理的模型和可用的培训数据,已显示出令人鼓舞的结果,以提高故障分类性能并确定未知的故障类别。使用Grey-Box复发性神经网络的残留生成可用于异常分类,其中将有关监视系统的物理见解纳入了机器学习算法的设计中。在这项工作中,使用系统模型的两部分图表来开发自动剩余设计,以设计灰色的复发神经网络,并使用真实的工业案例研究进行了评估。来自内燃机测试工作台的数据用于说明将机器学习和基于模型的故障诊断技术相结合的潜力。
Data-driven fault diagnosis is complicated by unknown fault classes and limited training data from different fault realizations. In these situations, conventional multi-class classification approaches are not suitable for fault diagnosis. One solution is the use of anomaly classifiers that are trained using only nominal data. Anomaly classifiers can be used to detect when a fault occurs but give little information about its root cause. Hybrid fault diagnosis methods combining physically-based models and available training data have shown promising results to improve fault classification performance and identify unknown fault classes. Residual generation using grey-box recurrent neural networks can be used for anomaly classification where physical insights about the monitored system are incorporated into the design of the machine learning algorithm. In this work, an automated residual design is developed using a bipartite graph representation of the system model to design grey-box recurrent neural networks and evaluated using a real industrial case study. Data from an internal combustion engine test bench is used to illustrate the potentials of combining machine learning and model-based fault diagnosis techniques.