论文标题

PX-NET:光度法网络的简单有效像素训练

PX-NET: Simple and Efficient Pixel-Wise Training of Photometric Stereo Networks

论文作者

Logothetis, Fotios, Budvytis, Ignas, Mecca, Roberto, Cipolla, Roberto

论文摘要

从反射光的方式中检索对象的准确3D重建是计算机视觉中非常具有挑战性的任务。尽管自光度立体声问题的定义定义以来已有四十年的时间,但当全球照明效应(例如铸造阴影,自我反射和环境光)启动起作用,尤其是对于镜面表面时,大多数文献取得了有限的成功。 最近的方法利用了与计算机图形结合的深度学习力量,以应对需要大量的训练数据,以颠倒图像辐照度方程并检索对象的几何形状。但是,呈现全球照明效应是一个缓慢的过程,可以限制可以生成的训练数据的数量。 在这项工作中,我们提出了一种新型的像素训练程序,以通过用独立的人均每个像素生成的数据代替全球渲染的图像的训练数据(观察图),以进行正常预测。我们表明,可以在观察图域上近似全局物理效应,这简化并加快了数据创建过程。 我们的网络PX-NET与合成数据集的其他PixelWise方法以及密集和稀疏光设置上的勤奋真实数据集相比,实现了最新性能。

Retrieving accurate 3D reconstructions of objects from the way they reflect light is a very challenging task in computer vision. Despite more than four decades since the definition of the Photometric Stereo problem, most of the literature has had limited success when global illumination effects such as cast shadows, self-reflections and ambient light come into play, especially for specular surfaces. Recent approaches have leveraged the power of deep learning in conjunction with computer graphics in order to cope with the need of a vast number of training data in order to invert the image irradiance equation and retrieve the geometry of the object. However, rendering global illumination effects is a slow process which can limit the amount of training data that can be generated. In this work we propose a novel pixel-wise training procedure for normal prediction by replacing the training data (observation maps) of globally rendered images with independent per-pixel generated data. We show that global physical effects can be approximated on the observation map domain and this simplifies and speeds up the data creation procedure. Our network, PX-NET, achieves the state-of-the-art performance compared to other pixelwise methods on synthetic datasets, as well as the Diligent real dataset on both dense and sparse light settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源