论文标题
受信任的中心验证模型和经典渠道远程状态准备
Trusted center verification model and classical channel remote state preparation
论文作者
论文摘要
经典通道远程状态制备(CCRSP)是量子密码学中重要的两党原始性。爱丽丝(经典多项式时间)和鲍勃(量子多项式时间)交换经典消息的多项式循环,而鲍勃最终获得了随机的单量状态,而爱丽丝最终获得了对状态的经典描述。在[T。 Morimae,Arxiv:2003.10712],提出了一种用于验证量子计算的信息,理论上的信息非相互作用方案。该协议的验证者是经典的,但是假定值得信赖的中心将随机的单量状状态发送给供者及其经典描述向验证者。如果可以在保持信息理论性的同时将受信任的中心替换为CCRSP协议,则可以从理论上进行信息的量子计算验证,这解决了长期存在的开放问题。在本文中,我们表明,除非MA中包含BQP,否则情况并非如此。我们还考虑了一个常规验证协议,在该协议中,验证者或受信任中心首先将量子状态发送给供者,然后将量子态发送给供者,然后供供者和验证者交换不断的经典消息。我们表明,除非在AM中包含BQP,否则第一个量子消息传输不能用(甚至是近似)CCRSP协议代替(甚至是近似)CCRSP协议。我们最终通过计算声音研究了验证。我们表明,如果CCRSP协议即使在任何量子多项式时期恶意摊贩方面都满足了一定条件,则用CCRSP协议替换受信任的中心实现了量子计算的计算经典验证。该条件比CCRSP的可验证性弱。
The classical channel remote state preparation (ccRSP) is an important two-party primitive in quantum cryptography. Alice (classical polynomial-time) and Bob (quantum polynomial-time) exchange polynomial rounds of classical messages, and Bob finally gets random single-qubit states while Alice finally gets classical descriptions of the states. In [T. Morimae, arXiv:2003.10712], an information-theoretically-sound non-interactive protocol for the verification of quantum computing was proposed. The verifier of the protocol is classical, but the trusted center is assumed that sends random single-qubit states to the prover and their classical descriptions to the verifier. If the trusted center can be replaced with a ccRSP protocol while keeping the information-theoretical soundness, an information-theoretically-sound classical verification of quantum computing is possible, which solves the long-standing open problem. In this paper, we show that it is not the case unless BQP is contained in MA. We also consider a general verification protocol where the verifier or the trusted center first sends quantum states to the prover, and then the prover and the verifier exchange a constant round of classical messages. We show that the first quantum message transmission cannot be replaced with an (even approximate) ccRSP protocol while keeping the information-theoretical soundness unless BQP is contained in AM. We finally study the verification with the computational soundness. We show that if a ccRSP protocol satisfies a certain condition even against any quantum polynomial-time malicious prover, the replacement of the trusted center with the ccRSP protocol realizes a computationally-sound classical verification of quantum computing. The condition is weaker than the verifiability of the ccRSP.