论文标题

高速率混合MNO2@CNT织物阳极用于锂离子电池:属性和锂存储机构通过原位同步加速器X射线散射

High Rate Hybrid MnO2@CNT Fabric Anode for Li-Ion Batteries: Properties and Lithium Storage Mechanism by In-Situ Synchrotron X-Ray Scattering

论文作者

Rana, Moumita, Avvaru, Venkata Sai, Boaretto, Nicola, Shea, Víctor A. de la Peña Ò, Marcill, Rebeca, Etacheri, Vinodkumar, Vilatela, Juan J.

论文摘要

可充电锂离子电池的高性能阳极是通过在导电支架上的过渡金属氧化物的纳米结构产生的。在这里,我们演示了一种直接生长在碳纳米管纤维织物上的MNO2的混合材料,该纤维纤维的织物分别在25 mA/g和5 A/G的排放电流密度下表现出明显的特定容量,其库洛姆布效率为97.5%。在1500个周期后,在当前密度为5 a/g之后,容量和稳定性在1500个循环后的容量保持量显着高于文献数据。涉及电化学和原位同步子X射线散射研究的详细研究表明,在电静态循环期间,MNO2经历了不可逆的相变向Limno2,该相变为Limno2,该相位通过互插过程存储锂,然后进行转换机制和伪造过程。拉曼光谱和X射线光电子光谱法进一步证实了这种机制。伪电荷存储的比例从27%到83%,目前的密度从25 mA/g到5 A/g。活性材料在内置电流收集器上的牢固附着使电极柔性且机械稳健,并确保在活动材料的不可逆相变和广泛的循环后,低电荷转移电阻和高电极表面积保持。

High-performance anodes for rechargeable Li-ion battery are produced by nanostructuring of the transition metal oxides on a conductive support. Here, we demonstrate a hybrid material of MnO2 directly grown onto fabrics of carbon nanotube fibres, which exhibits notable specific capacity over 1100 and 500 mAh/g at a discharge current density of 25 mA/g and 5 A/g, respectively, with coulombic efficiency of 97.5 %. Combined with 97 % capacity retention after 1500 cycles at a current density of 5 A/g, both capacity and stability are significantly above literature data. Detailed investigations involving electrochemical and in situ synchrotron X-ray scattering study reveal that during galvanostatic cycling, MnO2 undergoes an irreversible phase transition to LiMnO2, which stores lithium through an intercalation process, followed by conversion mechanism and pseudocapacitive processes. This mechanism is further confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy. The fraction of pseudocapacitive charge storage ranges from 27% to 83%, for current densities from 25 mA/g to 5 A/g. Firm attachment of the active material to the built-in current collector makes the electrodes flexible and mechanically robust, and ensures that the low charge transfer resistance and the high electrode surface area remain after irreversible phase transition of the active material and extensive cycling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源