论文标题
使用三角凝结网上的图形卷积网络与阿尔茨海默氏病痴呆分类的脑形态解释
Interpretation of Brain Morphology in Association to Alzheimer's Disease Dementia Classification Using Graph Convolutional Networks on Triangulated Meshes
论文作者
论文摘要
我们提出了一种基于网格的技术,以帮助使用皮质和皮质下结构的网格表示对阿尔茨海默氏病(ADD)进行分类。使用结构性神经影像的分类任务的深度学习方法通常需要广泛的学习参数才能优化。通常,这些自动医学诊断方法还缺乏对诊断涉及的大脑区域的视觉解释性。这项工作:(a)使用皮质和皮质下结构的表面信息分析大脑形状,(b)提出了一个用于最先进的图形卷积网络的残留学习框架,该框架可显着降低可学习参数,(c)通过类别的梯度信息可视化,可通过类别的梯度信息来解释我们对我们输入的重要区域。利用我们提出的方法利用了皮质和皮层表面信息的使用,我们在ADD与健康控制问题的测试精度上胜过其他机器学习方法,其测试精度为96.35%。我们通过观察其在25个试验的蒙特卡洛交叉验证中的性能来确认其模型的有效性。我们研究中生成的可视化图显示了有关当前有关与阿尔茨海默氏症痴呆相关的大脑病理变化结构定位的知识。
We propose a mesh-based technique to aid in the classification of Alzheimer's disease dementia (ADD) using mesh representations of the cortex and subcortical structures. Deep learning methods for classification tasks that utilize structural neuroimaging often require extensive learning parameters to optimize. Frequently, these approaches for automated medical diagnosis also lack visual interpretability for areas in the brain involved in making a diagnosis. This work: (a) analyzes brain shape using surface information of the cortex and subcortical structures, (b) proposes a residual learning framework for state-of-the-art graph convolutional networks which offer a significant reduction in learnable parameters, and (c) offers visual interpretability of the network via class-specific gradient information that localizes important regions of interest in our inputs. With our proposed method leveraging the use of cortical and subcortical surface information, we outperform other machine learning methods with a 96.35% testing accuracy for the ADD vs. healthy control problem. We confirm the validity of our model by observing its performance in a 25-trial Monte Carlo cross-validation. The generated visualization maps in our study show correspondences with current knowledge regarding the structural localization of pathological changes in the brain associated to dementia of the Alzheimer's type.