论文标题

通过重力崩溃的对称性破裂的限制:Lin-Mestel-Shu不稳定性的重新访问

Limitation of symmetry breaking by gravitational collapse: the revisit of Lin-Mestel-Shu instability

论文作者

Worrakitpoonpon, Tirawut

论文摘要

我们在$ n $体系统的球形崩溃期间重新审视了形状演变的主题。我们的主要目的是研究临界粒子数,在重力崩溃期间,最初波动的三轴性扩增是有效的,并且高于其无效。为此,我们为最初具有各向同性速度分散和简单的幂律密度曲线的颗粒系统开发了Lin-Mestel-Shu理论。我们首先确定,对于不稳定的云,两个半径对应于两个相对力及其波动的平衡:这种半径固定了非碰撞区域的尺寸,并从密度波动中固定了三轴种子的大小。我们假设最终状态的三轴程度取决于在倒塌阶段之前哪个半径为主导,从而导致核心和系统其余部分的自洽形状演变的不同方案。因此,两个半径相等的条件可以识别临界粒子数,这可以表示为初始状态参数的函数。在数值工作中,我们可以通过比较病毒化的扁平化与初始扁平化来查明这样的临界数。这两个数量之间的差异仅与指数在$ [0,0.25] $范围内的幂律密度概况的理论预测一致。对于更高的指数,结果表明,临界数量高于模拟$ n $的范围。我们推测还有一种额外的机制,与强密度梯度有关,该机制进一步增加了变平,需要更高的$ n $才能进一步削弱初始波动。

We revisit the topic of shape evolution during the spherical collapse of an $N$-body system. Our main objective is to investigate the critical particle number below which, during a gravitational collapse, the amplification of triaxiality from initial fluctuations is effective, and above which it is ineffective. To this aim, we develop the Lin-Mestel-Shu theory for a system of particles initially with isotropic velocity dispersion and with a simple power-law density profile. We first determine, for an unstable cloud, two radii corresponding to the balance of two opposing forces and their fluctuations: such radii fix the sizes of the non-collapsing region and the triaxial seed from density fluctuations. We hypothesize that the triaxial degree of the final state depends on which radius is dominant prior to the collapse phase leading to a different scheme of the self-consistent shape evolution of the core and the rest of the system. The condition where the two radii are equal therefore identifies the critical particle number, which can be expressed as the function of the parameters of initial state. In numerical work, we can pinpoint such a critical number by comparing the virialized flattening with the initial flattening. The difference between these two quantities agrees with the theoretical predictions only for the power-law density profiles with an exponent in the range $[0,0.25]$. For higher exponents, results suggest that the critical number is above the range of simulated $N$. We speculate that there is an additional mechanism, related to strong density gradients that increases further the flattening, requiring higher $N$ to further weaken the initial fluctuations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源