论文标题
增强了erdős-lovásztihany的猜想
Enhancing the Erdős-Lovász Tihany Conjecture for line graphs of multigraphs
论文作者
论文摘要
在本文中,我们证明了Erdős-LovászTihany猜想的增强版本,用于多编码的线图。也就是说,对于每个图形$ g $,其色数$χ(g)$都比其集团数字$ω(g)$和非负整数$ \ ell $,任何两个整数$ s,t \ geq 3.5 \ ell+2 $ with $ s+s+s+s+s+t =χ(g)+1 $ $ $(g) $χ(g [s])\ geq s $和$χ(g [t])\ geq t+\ ell $。特别是,当$ \ ell = 1 $时,我们只能为任何$ s,t \ geq4 $获得相同的结果。当$ \ ell = 0 $时,Erdős-LovászTihany的猜想是一种特殊情况。
In this paper, we prove an enhanced version of the Erdős-Lovász Tihany Conjecture for line graphs of multigraphs. That is, for every graph $G$ whose chromatic number $χ(G)$ is more than its clique number $ω(G)$ and for nonnegative integer $\ell$, any two integers $s,t \geq 3.5\ell+2$ with $s+t = χ(G)+1$, there is a partition $(S,T)$ of the vertex set $V(G)$ such that $χ(G[S])\geq s$ and $χ(G[T])\geq t+\ell$. In particular, when $\ell=1$, we can obtain the same result just for any $s,t\geq4$. The Erdős-Lovász Tihany conjecture is a special case when $\ell=0$.