论文标题
从分辨的多波长连续观测中推断出(亚)毫米灰尘的灰尘不相处和温度结构:HH 212磁盘的情况
Inferring (Sub)millimeter Dust Opacities and Temperature Structure in Edge-on Protostellar Disks From Resolved Multi-Wavelength Continuum Observations: The Case of the HH 212 Disk
论文作者
论文摘要
(子)需要将可观察到的尘埃连续排放转换为质量所需的毫米灰尘,但长期以来一直不确定,尤其是在年轻恒星周围的磁盘中。我们提出了一种约束特征光学深度的不透明度$κ_ν$的方法沿主要轴的观察到的通量,重力稳定性考虑的$ρ_0$,以及直接成像的$ r_0 $。我们将1D半分析模型应用于嵌入式,0类,HH 212磁盘,该模型在ALMA频段9、7、6和3和VLA KA频段中具有高分辨率数据($ = 0.43、0.43、0.43、0.85、1.3、2.9、2.9、2.9和9.1 mm)。 HH 212磁盘的建模通过RADMC-3D辐射转移计算扩展到2D。我们发现$κ_ν\ $ $ $ 1.9 \ times 10^{ - 2} $,$ 1.3 \ times 10^{ - 2} $和$ 4.9 \ times 10^{ - 3} $ cm $^2 $每克每克的气体和尘埃7克7、6和3,分别与无与伦比的量相同。推断的不透明性为广泛使用的处方$κ_λ= 2.3 \ times 10^{ - 2}(1.3 {\ rm mm}/λ)$ cm $^2 $ g $^$^{ - 1} $。 (1990)。我们推断出圆盘外边缘的温度约为45K,这会向内径向增加。它远高于Co和N $ _2 $等冰的升华温度,这支持磁盘化学不能完全从原始信封中遗传而来的概念。
(Sub)millimeter dust opacities are required for converting the observable dust continuum emission to the mass, but their values have long been uncertain, especially in disks around young stellar objects. We propose a method to constrain the opacity $κ_ν$ in edge-on disks from a characteristic optical depth $τ_{0,ν}$, the density $ρ_0$ and radius $R_0$ at the disk outer edge through $κ_ν=τ_{0,ν}/(ρ_0 R_0)$ where $τ_{0,ν}$ is inferred from the shape of the observed flux along the major axis, $ρ_0$ from gravitational stability considerations, and $R_0$ from direct imaging. We applied the 1D semi-analytical model to the embedded, Class 0, HH 212 disk, which has high-resolution data in ALMA Band 9, 7, 6, and 3 and VLA Ka band ($λ$=0.43, 0.85, 1.3, 2.9, and 9.1 mm). The modeling of the HH 212 disk is extended to 2D through RADMC-3D radiative transfer calculations. We find a dust opacity of $κ_ν\approx $ $1.9\times 10^{-2}$, $1.3\times 10^{-2}$, and $4.9\times 10^{-3}$ cm$^2$ per gram of gas and dust for ALMA Bands 7, 6, and 3, respectively with uncertainties dependent on the adopted stellar mass. The inferred opacities lend support to the widely used prescription $κ_λ=2.3\times 10^{-2} (1.3 {\rm mm}/λ)$ cm$^2$ g$^{-1}$ advocated by Beckwith et al. (1990). We inferred a temperature of ~45K at the disk outer edge which increases radially inward. It is well above the sublimation temperatures of ices such as CO and N$_2$, which supports the notion that the disk chemistry cannot be completely inherited from the protostellar envelope.