论文标题

生成化学:具有深度学习生成模型的药物发现

Generative chemistry: drug discovery with deep learning generative models

论文作者

Bian, Yuemin, Xie, Xiang-Qun

论文摘要

面对新药开发成本不断增加的成本,使用深度学习生成模型对分子结构的从头设计引入了令人鼓舞的药物发现解决方案。从原始文本,图像和视频的产生到新颖的分子结构的划痕,深度学习生成模型的令人难以置信的创造力使我们对高度机器智能所能实现的惊人。本文的目的是审查生成化学的最新进展,该进步依赖于生成建模来加快药物发现过程。这篇评论始于药物发现中人工智能的简要历史,以概述这种新兴范式。通常使用的化学数据库,分子表示以及化学信息和机器学习的工具被涵盖为生成化学的基础设施。有关利用尖端生成架构的详细讨论,包括复发性的自动编码器,对抗性自动编码器和生成对抗性网络,以进行复合生成。挑战和未来的观点随之而来。

The de novo design of molecular structures using deep learning generative models introduces an encouraging solution to drug discovery in the face of the continuously increased cost of new drug development. From the generation of original texts, images, and videos, to the scratching of novel molecular structures, the incredible creativity of deep learning generative models surprised us about the height machine intelligence can achieve. The purpose of this paper is to review the latest advances in generative chemistry which relies on generative modeling to expedite the drug discovery process. This review starts with a brief history of artificial intelligence in drug discovery to outline this emerging paradigm. Commonly used chemical databases, molecular representations, and tools in cheminformatics and machine learning are covered as the infrastructure for the generative chemistry. The detailed discussions on utilizing cutting-edge generative architectures, including recurrent neural network, variational autoencoder, adversarial autoencoder, and generative adversarial network for compound generation are focused. Challenges and future perspectives follow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源