论文标题

连续驾驶下量子组合中的相干保护和衰减机制

Coherence protection and decay mechanism in qubit ensembles under concatenated continuous driving

论文作者

Wang, Guoqing, Liu, Yi-Xiang, Cappellaro, Paola

论文摘要

旋转Qubits的密集集合对于量子应用非常有价值,即使它们的连贯性保护仍然具有挑战性。连续的动态脱钩可以在允许门操作的同时保护集合量子盘免受噪声的影响,但由于驾驶引入的额外噪声而阻碍了噪声。连续驾驶(CCD)技术原则上可以减轻此问题。在这里,我们基于Floquet理论提供了对CCD下动态的更深入的见解,该动态通过调整CCD方案中的驱动参数来诱导模式演化控制,从而导致优化的状态保护。我们通过同时解决$ 10^{10} $ spins的同时解决密集的氮呈(NV)合奏,从而在实验中证明了改善的控制。对于任意状态,已知状态的任意状态,我们的连贯性时间的相干时间有15倍改善,分别对应于驱动边带和由此产生的Mollow Triplet的中心频段进行500倍。我们可以通过优化驱动参数来考虑影响我们系统的噪声来实现此类连贯的时间增长。通过将广义的Bloch方程方法扩展到CCD方案,我们确定了主导NV集合中衰减机制的噪声源,通过实验结果确认我们的模型,并确定驱动强度产生最佳相干性。我们的结果可直接用于在连续驾驶和浴缸驾驶下优化量子轴相干保护,并在强大的脉冲设计和量子传感中应用。

Dense ensembles of spin qubits are valuable for quantum applications, even though their coherence protection remains challenging. Continuous dynamical decoupling can protect ensemble qubits from noise while allowing gate operations, but it is hindered by the additional noise introduced by the driving. Concatenated continuous driving (CCD) techniques can, in principle, mitigate this problem. Here we provide deeper insights into the dynamics under CCD, based on Floquet theory, that lead to optimized state protection by adjusting driving parameters in the CCD scheme to induce mode evolution control. We experimentally demonstrate the improved control by simultaneously addressing a dense Nitrogen-vacancy (NV) ensemble with $10^{10}$ spins. We achieve an experimental 15-fold improvement in coherence time for an arbitrary, unknown state, and a 500-fold improvement for an arbitrary, known state, corresponding to driving the sidebands and the center band of the resulting Mollow triplet, respectively. We can achieve such coherence time gains by optimizing the driving parameters to take into account the noise affecting our system. By extending the generalized Bloch equation approach to the CCD scenario, we identify the noise sources that dominate the decay mechanisms in NV ensembles, confirm our model by experimental results, and identify the driving strengths yielding optimal coherence. Our results can be directly used to optimize qubit coherence protection under continuous driving and bath driving, and enable applications in robust pulse design and quantum sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源