论文标题

在光谱稀疏限制下学习的图形学习

Graph learning under spectral sparsity constraints

论文作者

Subbareddy, B., Siripuram, Aditya, Zhang, Jingxin

论文摘要

图推理在机器学习,模式识别和分类中起着至关重要的作用。基于信号处理的文献方法通常假设图表上观察到的数据的某些变异特性。我们为推断观察到的数据具有较高变化的图表提供了一种理由。我们提出了一个基于信号处理的推理模型,该模型允许数据中的宽带频率变化,并提出了用于图推理的算法。所提出的推理算法包括两个步骤:1)从数据中学习图的正交特征向量; 2)从给定的图特征向量从图形拓扑的邻接矩阵中恢复。第一步通过具有封闭形式溶液的迭代算法解决。在第二步中,通过解决凸优化问题从特征向量推断出邻接矩阵。合成数据的数值结果表明,所提出的推理算法可以有效地从宽带假设下观察到的数据中捕获有意义的图形拓扑。

Graph inference plays an essential role in machine learning, pattern recognition, and classification. Signal processing based approaches in literature generally assume some variational property of the observed data on the graph. We make a case for inferring graphs on which the observed data has high variation. We propose a signal processing based inference model that allows for wideband frequency variation in the data and propose an algorithm for graph inference. The proposed inference algorithm consists of two steps: 1) learning orthogonal eigenvectors of a graph from the data; 2) recovering the adjacency matrix of the graph topology from the given graph eigenvectors. The first step is solved by an iterative algorithm with a closed-form solution. In the second step, the adjacency matrix is inferred from the eigenvectors by solving a convex optimization problem. Numerical results on synthetic data show the proposed inference algorithm can effectively capture the meaningful graph topology from observed data under the wideband assumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源