论文标题

在4d mart的非本地对称代数上

On the algebra of nonlocal symmetries for the 4D Mart\'ınez Alonso-Shabat equation

论文作者

Krasil'shchik, I. S., Vojcak, P.

论文摘要

我们考虑4D mart \'ınezalonso-shabat方程$ u_ {ty} = u_z u_ {xy} - u_y u_ {xz} $(也称为通用层次结构方程),并使用其已知的lax对构建了两个无限型差异覆盖物,构建了两个Infinite dimimential digimential diquimential diquimential diquestional coverings covering over $ \ \ \ e}。在这些掩护中,我们对非本地对称性的谎言代数进行了完整的描述。特别是,我们的结果概括了在[O.I.Morozov,A.Sergyeyev,四维玛总计\'ınezalonso-Shabat方程:降低和非局部对称性中获得的结果。 Geom J.和物理。 85(2014),40--45(Arxiv:1401.7942v2)],并包含在更大较大的Lie代数中将对称性作为子词的无限层次结构的无限层次结构。

We consider the 4D Mart\'ınez Alonso-Shabat equation $u_{ty} = u_z u_{xy} - u_y u_{xz}$ (also referred to as the universal hierarchy equation) and using its known Lax pair construct two infinite-dimensional differential coverings over $\mathcal{E}$. In these coverings, we give a complete description of the Lie algebras of nonlocal symmetries. In particular, our results generalize the ones obtained in [O.I.Morozov, A.Sergyeyev, The four-dimensional Mart\'ınez Alonso-shabat equation: reductions and nonlocal symmetries. J. of Geom. and Phys. 85 (2014), 40--45 (arXiv:1401.7942v2)] and contain the constructed there infinite hierarchy of commuting symmetries as a subalgebra in a much bigger Lie algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源