论文标题
随机Möbius地图:在非铁序1D无序系统中反射的分布
Random Möbius Maps: Distribution of Reflection in Non-Hermitian 1D Disordered Systems
论文作者
论文摘要
使用随机Möbius变换的特性,我们研究了随机有损散射链中反射系数的统计特性。我们明确确定分布的支持和相干完美吸收的条件。我们表明,在其边界上,分布具有类似Lifshits的尾巴,我们评估了。我们还通过Lyapunov指数获得了传入波渗透到培养基中的程度。与特定随机系统中的数值模拟相比,我们的结果一致。
Using the properties of random Möbius transformations, we investigate the statistical properties of the reflection coefficient in a random chain of lossy scatterers. We explicitly determine the support of the distribution and the condition for coherent perfect absorption to be possible. We show that at its boundaries the distribution has Lifshits-like tails, which we evaluate. We also obtain the extent of penetration of incoming waves into the medium via the Lyapunov exponent. Our results agree well when compared to numerical simulations in a specific random system.