论文标题
使用2D涂鸦对3D对象几何的交互式注释
Interactive Annotation of 3D Object Geometry using 2D Scribbles
论文作者
论文摘要
推断场景的详细3D几何形状对于机器人应用,仿真和3D内容创建至关重要。但是,这些信息很难获得,因此很少有数据集支持它。在本文中,我们提出了一个交互式框架,用于从点云数据和RGB图像批准3D对象几何形状。我们方法背后的关键思想是利用人类对3D世界的强大先验,以便进行互动注释完整的3D形状。我们的框架针对幼稚的用户,而没有艺术或图形专业知识。我们介绍了两个易于使用的交互模块。首先,我们对3D形状进行自动猜测,并允许用户通过在所需的2D视图中绘制涂鸦来提供有关大错误的反馈。接下来,我们旨在纠正次要错误,在该错误中,用户拖放网格顶点,并由以图形卷积网络实现的神经交互模块的辅助。在实验上,我们表明只需要几次用户互动来在流行的基准测试中产生高质量的3D形状,例如Shapenet,Pix3D和Scannet。我们将我们的框架作为Web服务实施,并进行用户研究,在其中我们显示使用我们方法的用户注释的数据有效地促进了现实世界的学习任务。 Web服务:http://www.cs.toronto.edu/~shenti11/scribble3d。
Inferring detailed 3D geometry of the scene is crucial for robotics applications, simulation, and 3D content creation. However, such information is hard to obtain, and thus very few datasets support it. In this paper, we propose an interactive framework for annotating 3D object geometry from both point cloud data and RGB imagery. The key idea behind our approach is to exploit strong priors that humans have about the 3D world in order to interactively annotate complete 3D shapes. Our framework targets naive users without artistic or graphics expertise. We introduce two simple-to-use interaction modules. First, we make an automatic guess of the 3D shape and allow the user to provide feedback about large errors by drawing scribbles in desired 2D views. Next, we aim to correct minor errors, in which users drag and drop mesh vertices, assisted by a neural interactive module implemented as a Graph Convolutional Network. Experimentally, we show that only a few user interactions are needed to produce good quality 3D shapes on popular benchmarks such as ShapeNet, Pix3D and ScanNet. We implement our framework as a web service and conduct a user study, where we show that user annotated data using our method effectively facilitates real-world learning tasks. Web service: http://www.cs.toronto.edu/~shenti11/scribble3d.