论文标题

持续的机器阅读理解适应

Continual Domain Adaptation for Machine Reading Comprehension

论文作者

Su, Lixin, Guo, Jiafeng, Zhang, Ruqing, Fan, Yixing, Lan, Yanyan, Cheng, Xueqi

论文摘要

机器阅读理解(MRC)已成为各种自然语言处理(NLP)应用程序(例如问答和对话系统)的核心组成部分。 MRC模型需要在非平稳环境中学习,这成为一个实用的挑战,在非平稳环境中,基础数据分布会随着时间而变化。一个典型的情况是域漂移,即数据的不同域接一个地出现,其中需要MRC模型来适应新领域,同时保持先前学习的能力。为了应对这一挑战,在这项工作中,我们介绍了MRC的\ textIt {持续域aftaptation}(CDA)任务。据我们所知,这是关于MRC持续学习观点的第一个研究。我们分别将现有的MRC集合重新组织为不同的域,分别相对于上下文类型和问题类型来构建两个基准数据集。然后,我们分析并观察MRC在CDA设置下的灾难性遗忘(CF)现象。为了解决CDA任务,我们使用基于正则化的方法或动态架构范式提出了几种基于BERT的持续学习MRC模型。我们在CDA任务下分析了不同持续学习MRC模型的性能,并表明所提出的基于动态架构的模型可实现最佳性能。

Machine reading comprehension (MRC) has become a core component in a variety of natural language processing (NLP) applications such as question answering and dialogue systems. It becomes a practical challenge that an MRC model needs to learn in non-stationary environments, in which the underlying data distribution changes over time. A typical scenario is the domain drift, i.e. different domains of data come one after another, where the MRC model is required to adapt to the new domain while maintaining previously learned ability. To tackle such a challenge, in this work, we introduce the \textit{Continual Domain Adaptation} (CDA) task for MRC. So far as we know, this is the first study on the continual learning perspective of MRC. We build two benchmark datasets for the CDA task, by re-organizing existing MRC collections into different domains with respect to context type and question type, respectively. We then analyze and observe the catastrophic forgetting (CF) phenomenon of MRC under the CDA setting. To tackle the CDA task, we propose several BERT-based continual learning MRC models using either regularization-based methodology or dynamic-architecture paradigm. We analyze the performance of different continual learning MRC models under the CDA task and show that the proposed dynamic-architecture based model achieves the best performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源