论文标题

Navier-Stokes方程的神经网络多机求解器

A neural network multigrid solver for the Navier-Stokes equations

论文作者

Margenberg, Nils, Hartmann, Dirk, Lessig, Christian, Richter, Thomas

论文摘要

我们介绍了我们为设备Navier-Stokes方程开发的深神经网络多机求解器(DNN-MG)。 DNN-MG使用几何多机求解器和具有内存的复发性神经网络的明智组合来提高计算效率。 DNN-MG使用多网格方法在粗级别上求解,而神经网络纠正了插值解决方案,从而避免了越来越昂贵的计算,这些计算必须在那里执行。这导致通过DNN-MG高度紧凑的神经网络减少计算时间。紧凑性是由其针对本地贴片的设计以及可用的粗Multigrid解决方案的设计,该解决方案为校正提供了“指南”。具有少量参数的紧凑神经网络也减少了训练时间和数据。此外,该网络的局部性有助于普遍性,并允许人们在一个网格域上也使用在一个网格域上训练的DNN-MG。我们证明了DNN-MG对障碍物周围2D层流的变化的功效。为此,我们的方法显着改善了解决方案以及升力和阻力功能,同时仅需要完整的多族解决方案的计算时间一半。我们还表明,通过一种障碍物训练了用于配置的DNN-MG可以推广到其他相关的问题,可以使用几何多摩托方法有效地解决这些障碍问题。

We present the deep neural network multigrid solver (DNN-MG) that we develop for the instationary Navier-Stokes equations. DNN-MG improves computational efficiency using a judicious combination of a geometric multigrid solver and a recurrent neural network with memory. DNN-MG uses the multi-grid method to classically solve on coarse levels while the neural network corrects interpolated solutions on fine ones, thus avoiding the increasingly expensive computations that would have to be performed there. This results in a reduction in computation time through DNN-MG's highly compact neural network. The compactness results from its design for local patches and the available coarse multigrid solutions that provides a "guide" for the corrections. A compact neural network with a small number of parameters also reduces training time and data. Furthermore, the network's locality facilitates generalizability and allows one to use DNN-MG trained on one mesh domain also on different ones. We demonstrate the efficacy of DNN-MG for variations of the 2D laminar flow around an obstacle. For these, our method significantly improves the solutions as well as lift and drag functionals while requiring only about half the computation time of a full multigrid solution. We also show that DNN-MG trained for the configuration with one obstacle can be generalized to other time dependent problems that can be solved efficiently using a geometric multigrid method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源