论文标题

厚的同位素属性和Heegaard分裂的映射课程组

Thick isotopy property and the mapping class groups of Heegaard splittings

论文作者

Iguchi, Daiki

论文摘要

我们为有限生成的$ 3 $ manifold的Heegaard分裂空间的基本组提供了必要的条件。这种情况正是通过冷,Gabai和Ketover证明的厚的同位素引理的结论,该结论说,Heegaard表面的任何同位素都是由$ 1 $ $ $的表面的参数家族来实现的,面积在上方由通用常数界面,并且具有“厚度属性”。我们还证明,如果在拓扑上很小(在巴赫曼的意义上),则双曲线或球形$ 3 $ manifold的远程分裂可以满足该条件,并且其磁盘复合体具有有限生成的同型群体。总之,这样的Heegaard分裂已经有限地生成的映射类小组。

We give a necessary and sufficient condition for the fundamental group of the space of Heegaard splittings of an irreducible $3$-manifold to be finitely generated. The condition is exactly the conclusion of the thick isotopy lemma proved by Colding, Gabai and Ketover, which says that any isotopy of a Heegaard surface is achieved by a $1$-parameter family of surfaces with area bounded above by a universal constant and with some ``thickness property''. We also prove that a Heegaard splitting of a hyperbolic or spherical $3$-manifold satisfies the condition if it is topologically minimal (in the sense of Bachman) and its disk complex has finitely generated homotopy group. In conclusion, such a Heegaard splitting has finitely generated mapping class group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源