论文标题
改善学术神经网络图的框架
A Framework for Improving Scholarly Neural Network Diagrams
论文作者
论文摘要
神经网络是一种普遍有效的机器学习组件,它们的应用导致许多领域的科学进步。随着神经网络系统的领域快速增长,重要的是要了解如何传达进步。图是这一点的关键,几乎所有描述新系统的论文中都出现。本文通过访谈,卡片分类和围绕生态衍生的例子构成的定性反馈来报告一项研究使用神经网络系统图的研究。我们发现在创建和解释图中的使用,感知和偏好的多样性都在现有设计,信息可视化和用户体验指南的背景下进行了研究。 这项访谈研究用于得出改善现有图表的框架。通过混合方法实验研究评估了该框架,以及一种基于``基于语料库''的方法研究了将框架与引文联系起来的已发表图的特性。研究表明,该框架捕获了与学术NN图的交流功效有关的方面,并为其实施提供了简单的步骤。
Neural networks are a prevalent and effective machine learning component, and their application is leading to significant scientific progress in many domains. As the field of neural network systems is fast growing, it is important to understand how advances are communicated. Diagrams are key to this, appearing in almost all papers describing novel systems. This paper reports on a study into the use of neural network system diagrams, through interviews, card sorting, and qualitative feedback structured around ecologically-derived examples. We find high diversity of usage, perception and preference in both creation and interpretation of diagrams, examining this in the context of existing design, information visualisation, and user experience guidelines. This interview study is used to derive a framework for improving existing diagrams. This framework is evaluated through a mixed-methods experimental study, and a ``corpus-based'' approach examining properties of published diagrams linking the framework to citations. The studies suggest that the framework captures aspects relating to communicative efficacy of scholarly NN diagrams, and provides simple steps for their implementation.