论文标题

控制映射的流形,以了解深度学习

Control on the Manifolds of Mappings with a View to the Deep Learning

论文作者

Agrachev, Andrei, Sarychev, Andrey

论文摘要

对人工神经网络(ANN)的深入学习可以视为特定类别的插值问题。目的是找到一个神经网络,其输入输出图在有限或无限训练集上近似于所需的地图。我们的想法包括将输入输出图作为近似值,这是由非线性连续时间控制系统产生的。在限制中,该控制系统可以看作是一个连续层的网络,每个网络都标记为时间变量。每个时间瞬间的控件值是图层的参数。

Deep learning of the Artificial Neural Networks (ANN) can be treated as a particular class of interpolation problems. The goal is to find a neural network whose input-output map approximates well the desired map on a finite or an infinite training set. Our idea consists of taking as an approximant the input-output map, which arises from a nonlinear continuous-time control system. In the limit such control system can be seen as a network with a continuum of layers, each one labelled by the time variable. The values of the controls at each instant of time are the parameters of the layer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源