论文标题
CD-SEIZ:以认知驱动的SEIZ隔室模型,用于预测Twitter上信息级联的预测
CD-SEIZ: Cognition-Driven SEIZ Compartmental Model for the Prediction of Information Cascades on Twitter
论文作者
论文摘要
信息传播社交媒体平台在我们的生活中已变得无处不在,因为病毒信息的传播无论其真实性如何。由于它们在互联网上迅速散发,因此一些信息级联变成了病毒。操纵或迷失方向的真实信息(虚假新闻)的不可控制的病毒性可能非常有害,而真实新闻的传播是有利的,尤其是在紧急情况下。我们通过提出新颖的SEIZ(易感/暴露/感染/怀疑论)模型来解决信息级联的问题,该模型通过考虑用户的认知处理深度来胜过原始版本。我们将信息级联定义为社交媒体用户对原始内容的反应,这至少需要最少的身体和认知工作;因此,我们考虑了转发/回复/报价(提及)活动,并在2018年4月1日至2019年4月30日的叙利亚白色头盔Twitter数据设置上测试了我们的框架。在通过传统隔间模型预测级联模式的情况下,所有活动都是分组的,并考虑了他们的总结;但是,隔室之间的过渡率应根据活动类型而有所不同,因为它们的身体和认知工作要求不一样。基于这个假设,我们在Twitter上的信息级联预测中设计了一个认知驱动的SEIZ(CD-SEIZ)模型。我们在1000个Twitter Cascades上测试了SIS,SEIZ和CD-SEIZ模型,发现CD-SEIZ的拟合误差明显较低,并提供了统计上更准确的估计。
Information spreading social media platforms has become ubiquitous in our lives due to viral information propagation regardless of its veracity. Some information cascades turn out to be viral since they circulated rapidly on the Internet. The uncontrollable virality of manipulated or disorientated true information (fake news) might be quite harmful, while the spread of the true news is advantageous, especially in emergencies. We tackle the problem of predicting information cascades by presenting a novel variant of SEIZ (Susceptible/ Exposed/ Infected/ Skeptics) model that outperforms the original version by taking into account the cognitive processing depth of users. We define an information cascade as the set of social media users' reactions to the original content which requires at least minimal physical and cognitive effort; therefore, we considered retweet/ reply/ quote (mention) activities and tested our framework on the Syrian White Helmets Twitter data set from April 1st, 2018 to April 30th, 2019. In the prediction of cascade pattern via traditional compartmental models, all the activities are grouped, and their summation is taken into account; however, transition rates between compartments should vary according to the activity type since their requirements of physical and cognitive efforts are not same. Based on this assumption, we design a cognition-driven SEIZ (CD-SEIZ) model in the prediction of information cascades on Twitter. We tested SIS, SEIZ, and CD-SEIZ models on 1000 Twitter cascades and found that CD-SEIZ has a significantly low fitting error and provides a statistically more accurate estimation.