论文标题
解偶联电动流溶液
Uncoupling electrokinetic flow solutions
论文作者
论文摘要
连续尺度电动多孔媒体流量和过量的电荷再分配方程是使用特征值分解未耦合的。解偶联导致一对独立扩散方程,用于“中间”电势,受经过修改的材料特性和边界条件。然后,通过重新组合矩阵矢量倍数中的两个中间未耦合问题的溶液来发现流体压力和静电电势。材料属性或源术语中的表达式中,可能需要扩展精度或仔细重写以避免数值取消,但是可以以典型的双重精度计算解决方案本身。该方法可与分析或网格的数值解决方案一起使用,并通过两个示例进行了说明。操纵流向泵井的解决方案以预测流势和电渗透,并得出周期性的一维分析溶液,并用于预测遭受低频交替电流和压力激发的实验室流动池中的电流和流势。这些示例说明了特征值解耦方法的实用性,重新利用现有的分析解决方案并利用耦合物理学的简单到衍生解决方案或数值模型。
The continuum-scale electrokinetic porous-media flow and excess charge redistribution equations are uncoupled using eigenvalue decomposition. The uncoupling results in a pair of independent diffusion equations for "intermediate" potentials subject to modified material properties and boundary conditions. The fluid pressure and electrostatic potential are then found by recombining the solutions to the two intermediate uncoupled problems in a matrix-vector multiply. Expressions for the material properties or source terms in the intermediate uncoupled problem may require extended precision or careful re-writing to avoid numerical cancellation, but the solutions themselves can be computed in typical double precision. The approach works with analytical or gridded numerical solutions and is illustrated through two examples. The solution for flow to a pumping well is manipulated to predict streaming potential and electroosmosis, and a periodic one-dimensional analytical solution is derived and used to predict electroosmosis and streaming potential in a laboratory flow cell subjected to low frequency alternating current and pressure excitation. The examples illustrate the utility of the eigenvalue decoupling approach, repurposing existing analytical solutions and leveraging simpler-to-derive solutions or numerical models for coupled physics.