论文标题

高维功能时间序列的基于自相关性的学习框架

An autocovariance-based learning framework for high-dimensional functional time series

论文作者

Chang, Jinyuan, Chen, Cheng, Qiao, Xinghao, Yao, Qiwei

论文摘要

许多科学和经济应用涉及高维功能时间序列的统计学习,其中功能变量的数量与串行依赖的功能观察的数量相当甚至大。在本文中,我们对观察到的功能时间序列进行了建模,这些功能时间序列在于每个功能基准作为两个不相关的组件的总和,一个动态和一个白噪声。从观察到的功能时间序列的自动驾驶功能自动滤除噪声项的事实,我们提出了三步程序,首先要首先执行基于高能力的尺寸降低,然后提出一个新型的基于自动化的块正则基于自动方便的块正规化的最小距离估计框架以产生块稀疏估计值,并基于最终功能率估计,以产生块稀疏估计值。我们研究了提出的估计器的理论特性,并通过三个稀疏的高维功能时间序列模型说明了提出的估计程序。我们通过模拟和真实数据集证明我们的提议估计器的表现明显优于竞争对手。

Many scientific and economic applications involve the statistical learning of high-dimensional functional time series, where the number of functional variables is comparable to, or even greater than, the number of serially dependent functional observations. In this paper, we model observed functional time series, which are subject to errors in the sense that each functional datum arises as the sum of two uncorrelated components, one dynamic and one white noise. Motivated from the fact that the autocovariance function of observed functional time series automatically filters out the noise term, we propose a three-step procedure by first performing autocovariance-based dimension reduction, then formulating a novel autocovariance-based block regularized minimum distance estimation framework to produce block sparse estimates, and based on which obtaining the final functional sparse estimates. We investigate theoretical properties of the proposed estimators, and illustrate the proposed estimation procedure via three sparse high-dimensional functional time series models. We demonstrate via both simulated and real datasets that our proposed estimators significantly outperform the competitors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源