论文标题
基于AI的智能制造过程的建模和数据驱动评估
AI-based Modeling and Data-driven Evaluation for Smart Manufacturing Processes
论文作者
论文摘要
智能制造是指在生产运营中采用高级分析方法实施的优化技术。随着在制造过程中部署工业互联网(IIOT)传感器的广泛增加,因此有逐步需要进行最佳有效的数据管理方法。拥抱机器学习和人工智能来利用制造数据,可以导致高效且智能的自动化。在本文中,我们基于进化计算和深度学习算法进行了全面的分析,以使半导体制造聪明。我们提出了一种动态算法,以获得有关半导体制造过程的有用见解并应对各种挑战。我们详细介绍了遗传算法和神经网络的利用来提出智能特征选择算法。我们的目标是为控制制造过程提供高级解决方案,并对各个维度的看法,使制造商能够访问有效的预测技术。
Smart Manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying Industrial Internet of Things (IIoT) sensors in manufacturing processes, there is a progressive need for optimal and effective approaches to data management. Embracing Machine Learning and Artificial Intelligence to take advantage of manufacturing data can lead to efficient and intelligent automation. In this paper, we conduct a comprehensive analysis based on Evolutionary Computing and Deep Learning algorithms toward making semiconductor manufacturing smart. We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes and to address various challenges. We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm. Our objective is to provide an advanced solution for controlling manufacturing processes and to gain perspective on various dimensions that enable manufacturers to access effective predictive technologies.