论文标题
重新识别的人接受多晶状体表示
Receptive Multi-granularity Representation for Person Re-Identification
论文作者
论文摘要
重新识别的人的关键是在可变环境之间实现一致的本地细节来判别表示。当前的基于条纹的特征学习方法提供了令人印象深刻的精度,但在多样性,局部性和鲁棒性之间并没有进行适当的权衡,这很容易遭受着局部语义上的一部分不一致而遭受僵化分区和错误对准之间的冲突。本文提出了一种接受性的多粒性学习方法,以促进基于条纹的特征学习。这种方法在中间表示上执行局部分区以操作接受区域范围,而不是输入图像或输出特征上的当前方法,因此可以增强局部性的表示,同时保持适当的本地关联。为此,通过对均匀条纹使用显着性平衡的激活来自适应地汇总局部分区。进一步引入了随机转移增强,以使边界框中出现区域的较高差异以简化未对准。通过两个分支网络体系结构,可以学习不同的判别身份表示形式。这样,我们的模型可以提供更全面,更有效的功能表示,而无需更大的模型存储成本。对数据集内和跨数据库评估的广泛实验证明了该方法的有效性。尤其是,我们的方法实现了96.2%@rank-1或90.0%@map的最新准确性在具有挑战性的市场1501基准上。
A key for person re-identification is achieving consistent local details for discriminative representation across variable environments. Current stripe-based feature learning approaches have delivered impressive accuracy, but do not make a proper trade-off between diversity, locality, and robustness, which easily suffers from part semantic inconsistency for the conflict between rigid partition and misalignment. This paper proposes a receptive multi-granularity learning approach to facilitate stripe-based feature learning. This approach performs local partition on the intermediate representations to operate receptive region ranges, rather than current approaches on input images or output features, thus can enhance the representation of locality while remaining proper local association. Toward this end, the local partitions are adaptively pooled by using significance-balanced activations for uniform stripes. Random shifting augmentation is further introduced for a higher variance of person appearing regions within bounding boxes to ease misalignment. By two-branch network architecture, different scales of discriminative identity representation can be learned. In this way, our model can provide a more comprehensive and efficient feature representation without larger model storage costs. Extensive experiments on intra-dataset and cross-dataset evaluations demonstrate the effectiveness of the proposed approach. Especially, our approach achieves a state-of-the-art accuracy of 96.2%@Rank-1 or 90.0%@mAP on the challenging Market-1501 benchmark.