论文标题
sr $ _2 $ ruo $ _4 $的隐藏异常大厅效应,手性超导为由ru $ d_ {xy} $ orbital主导
Hidden anomalous Hall effect in Sr$_2$RuO$_4$ with chiral superconductivity dominated by the Ru $d_{xy}$ orbital
论文作者
论文摘要
超导SR $ _2 $ ruo $ _4 $中的极地Kerr效应意味着有限的交流异常电导率。由于在单个Ru $ d_ {xy} $ orbital,多用途多射手手性配对上开发的手性超导配对不会预期固有的异常大厅效应(AHE),因此在潜在的机构中提出了涉及Ru $ d_ {xz} $和$ d_ {yz} $ orbit的ru $ d_ {xz} $和$ d_ {xz} $和$ d_ {xz} $的主体配对。在这里,我们提出,即使手性超导性主要由$ d_ {xy} $ orbital驱动。这是通过两个单独的型号证明的,这些模型考虑了Cooper配对中的亚域轨道,一种涉及Ruo $ _2 $飞机中的氧$ P_X $和$ P_Y $ ORBITALS,另一个涉及$ d_ {xz} $和$ d_ {yz {yz} $ orbitals。在这两个模型中,主要的$ d_ {xy} $与其他轨道之间的有限轨道混合可能会诱导它们之间的轨道间配对,而所得状态则支持固有的AHE,而Kerr旋转角度可能会与实验观察结果和解。因此,我们的建议在SR $ _2 $ ruo $ _4 $中阐明了有关微观配对的新灯。我们还表明,对于非手续状态,例如$ \ Mathcal {s}+i \ Mathcal {d} $,$ \ Mathcal {d}+i \ Mathcal {p} $ {p} $ and $ \ Mathcal {d}+i \ I \ Mathcal {g g} $,通常不存在固有的约束 材料。
The polar Kerr effect in superconducting Sr$_2$RuO$_4$ implies finite ac anomalous Hall conductivity. Since intrinsic anomalous Hall effect (AHE) is not expected for a chiral superconducting pairing developed on the single Ru $d_{xy}$ orbital, multiorbital chiral pairing actively involving the Ru $d_{xz}$ and $d_{yz}$ orbitals has been proposed as a potential mechanism. Here we propose that AHE could still arise even if the chiral superconductivity is predominantly driven by the $d_{xy}$ orbital. This is demonstrated through two separate models which take into account subdominant orbitals in the Cooper pairing, one involving the oxygen $p_x$ and $p_y$ orbitals in the RuO$_2$ plane, and another the $d_{xz}$ and $d_{yz}$ orbitals. In both models, finite orbital mixing between the dominant $d_{xy}$ and the other orbitals may induce inter-orbital pairing between them, and the resultant states support intrinsic AHE, with Kerr rotation angles that could potentially reconcile with the experimental observation. Our proposal therefore sheds new light on the microscopic pairing in Sr$_2$RuO$_4$. We also show that intrinsic Hall effect is generally absent for non-chiral states such as $\mathcal{S}+i\mathcal{D}$, $\mathcal{D}+i\mathcal{P}$ and $\mathcal{D}+i\mathcal{G}$, which provides a clear constraint on the symmetry of the superconducting order in this material.