论文标题

张量产物和几何萨克对应的基础

Bases of tensor products and geometric Satake correspondence

论文作者

Baumann, Pierre, Gaussent, Stéphane, Littelmann, Peter

论文摘要

几何萨克对应关系可以被视为一个复杂连接的还原群G的几何结构。在对这种对应关系的研究中,Mirković和Vilonen引入了代数周期,在每个不可征象的表示中都提供了线性的基础。贡献者和沉概括了这种结构,在不可减至表示的每种张量产物中定义了线性基础。我们研究了这些基础,并表明它们与Lusztig的双重规范基础共享许多属性。

The geometric Satake correspondence can be regarded as a geometric construction of the rational representations of a complex connected reductive group G. In their study of this correspondence, Mirković and Vilonen introduced algebraic cycles that provide a linear basis in each irreducible representation. Generalizing this construction, Goncharov and Shen define a linear basis in each tensor product of irreducible representations. We investigate these bases and show that they share many properties with the dual canonical bases of Lusztig.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源