论文标题

准气体动态方程的计算多尺度方法

Computational multiscale methods for quasi-gas dynamic equations

论文作者

Chetverushkin, Boris, Chung, Eric, Efendiev, Yalchin, Pun, Sai-Mang, Zhang, Zecheng

论文摘要

在本文中,我们考虑了多尺度环境中的准气体动力(QGD)模型。该模型方程可以视为双曲线正则化,并源自动力学方程。到目前为止,对QGD模型的研究一直集中在恒定系数的问题上。在本文中,我们研究了多尺度媒体中的QGD模型,该模型可用于多孔媒体应用程序。从多尺度方法的角度来看,由于模型问题具有双曲线多尺度术语,因此这个多尺度问题很有趣,并且为双曲线方程设计多尺度方法很具有挑战性。在本文中,我们应用约束能量最小化广义的多尺度有限元法(CEM-GMSFEM)与LeapFrog方案的及时解决此问题。 CEM-GMSFEM提供了一个灵活且系统的框架,以构建至关重要的多尺度基础功能,以通过降低的计算成本近似解决问题的解决方案。通过这种空间离散的方法,我们在所谓的CFL条件的放松版本下建立了完全离散方案的稳定性。提出了该方法的完整收敛分析。提供数值结果以说明和验证理论发现。

In this paper, we consider the quasi-gas-dynamic (QGD) model in a multiscale environment. The model equations can be regarded as a hyperbolic regularization and are derived from kinetic equations. So far, the research on QGD models has been focused on problems with constant coefficients. In this paper, we investigate the QGD model in multiscale media, which can be used in porous media applications. This multiscale problem is interesting from a multiscale methodology point of view as the model problem has a hyperbolic multiscale term, and designing multiscale methods for hyperbolic equations is challenging. In the paper, we apply the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) combined with the leapfrog scheme in time to solve this problem. The CEM-GMsFEM provides a flexible and systematical framework to construct crucial multiscale basis functions for approximating the solution to the problem with reduced computational cost. With this approach of spatial discretization, we establish the stability of the fully discretized scheme under a relaxed version of the so-called CFL condition. Complete convergence analysis of the proposed method is presented. Numerical results are provided to illustrate and verify the theoretical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源