论文标题

双曲线组和非紧凑型实际代数曲线

Hyperbolic Groups and Non-Compact Real Algebraic Curves

论文作者

Natanzon, Sergey, Pratoussevitch, Anna

论文摘要

在本文中,我们研究了非紧密的真实代数曲线的空间,即对$(p,τ)$,其中$ p $是带有有限数量的孔和穿刺的紧凑型riemann表面,$τ:p \ to p $是抗霍洛摩尔肌的屈服。我们描述了Fuchsian群体对非紧密的实际代数曲线的均匀化。我们构建非紧密的真实代数曲线的空间,并描述其连接的组件。我们证明,任何连接的组件都是通过离散组的有限维真实矢量空间的商同构的,并确定这些向量空间的尺寸。

In this paper we study the spaces of non-compact real algebraic curves, i.e. pairs $(P,τ)$, where $P$ is a compact Riemann surface with a finite number of holes and punctures and $τ:P\to P$ is an anti-holomorphic involution. We describe the uniformisation of non-compact real algebraic curves by Fuchsian groups. We construct the spaces of non-compact real algebraic curves and describe their connected components. We prove that any connected component is homeomorphic to a quotient of a finite-dimensional real vector space by a discrete group and determine the dimensions of these vector spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源