论文标题

LRC,MEMRISTIVE和HYBRID水库的计算能力

The Computational Capacity of LRC, Memristive and Hybrid Reservoirs

论文作者

Sheldon, Forrest C., Kolchinsky, Artemy, Caravelli, Francesco

论文摘要

储层计算是一种使用高维动力系统或\ emph {Reservoir}的机器学习范式,以近似和预测时间序列数据。可以通过从电子电路中构造储层来增强储层计算机的规模,速度和功率使用,并且一些实验研究证明了这一方向的希望。但是,设计质量储层需要精确理解此类电路如何处理和存储信息。我们分析了包括线性元件(电阻器,电感器和电容器)和称为MEMRISTOR的非线性记忆元素的电子储层的可行性和最佳设计。我们提供了有关这些储层的可行性的分析结果,并通过检查它们可以近似的输入输出关系的类型来对其计算属性进行系统的特征。这使我们能够设计具有最佳特性的储层。通过引入储层的总线性和非线性计算能力的衡量标准,我们能够设计其总计算能力随系统尺寸广泛规模的电子电路。我们的电子储层可以以可能直接在硬件中实现的形式匹配或超过常规“ Echo State Network”储层的性能。

Reservoir computing is a machine learning paradigm that uses a high-dimensional dynamical system, or \emph{reservoir}, to approximate and predict time series data. The scale, speed and power usage of reservoir computers could be enhanced by constructing reservoirs out of electronic circuits, and several experimental studies have demonstrated promise in this direction. However, designing quality reservoirs requires a precise understanding of how such circuits process and store information. We analyze the feasibility and optimal design of electronic reservoirs that include both linear elements (resistors, inductors, and capacitors) and nonlinear memory elements called memristors. We provide analytic results regarding the feasibility of these reservoirs, and give a systematic characterization of their computational properties by examining the types of input-output relationships that they can approximate. This allows us to design reservoirs with optimal properties. By introducing measures of the total linear and nonlinear computational capacities of the reservoir, we are able to design electronic circuits whose total computational capacity scales extensively with the system size. Our electronic reservoirs can match or exceed the performance of conventional "echo state network" reservoirs in a form that may be directly implemented in hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源