论文标题

关于具有有限的VC-Dimension图的Zarankiewicz问题

On the Zarankiewicz problem for graphs with bounded VC-dimension

论文作者

Janzer, Oliver, Pohoata, Cosmin

论文摘要

Zarankiewicz的问题要求在$ N $ VERTICES上的双分图中的最大边数,该图形不包含完整的两部分图$ k_ {k,k,k} $作为子图。由于KőVári,Sós和Turán引起的经典定理说,这一数字为$ o \ left(n^{2-1/k} \ right)$。这个问题的一个重要变体是在具有VC-Dimension的两部分图中的类似问题,最多是$ d $,其中$ d $是固定整数,因此$ k \ geq d \ geq 2 $。 Fox,Pach,Sheffer,Suk和Zahl的显着结果[J.欧元。数学。 Soc。 (JEMS),不。 19,1785-1810]在发病率的几何形状中有多个应用程序表明,在此其他假设下,在$ n $ Vertices上的两部分图中的边数,并且没有$ k_ {k,k,k} $的副本,作为一个子图,必须为$ o \ weft(n^{2-1/d} \ right)$。当$ k = d = 2 $时,该定理很清晰,因为通过设计,任何$ k_ {2,2} $ - 免费图形自动最多具有VC-dimension,最多只有$ 2 $,并且有$ω\ left(n^{3/2}} \ right)$ω\ weft的众所周知的示例。但是,事实证明,这种现象不再持续到任何较大的$ d $。 我们显示了以下改进的结果:两分之一图中的最大边数,没有$ k_ {k,k} $和$ d $的VC-dimension $ d $ is $ o(n^{2-1/d})$,每$ k \ geq d \ geq d \ geq 3 $。

The problem of Zarankiewicz asks for the maximum number of edges in a bipartite graph on $n$ vertices which does not contain the complete bipartite graph $K_{k,k}$ as a subgraph. A classical theorem due to Kővári, Sós, and Turán says that this number of edges is $O\left(n^{2 - 1/k}\right)$. An important variant of this problem is the analogous question in bipartite graphs with VC-dimension at most $d$, where $d$ is a fixed integer such that $k \geq d \geq 2$. A remarkable result of Fox, Pach, Sheffer, Suk, and Zahl [J. Eur. Math. Soc. (JEMS), no. 19, 1785-1810] with multiple applications in incidence geometry shows that, under this additional hypothesis, the number of edges in a bipartite graph on $n$ vertices and with no copy of $K_{k,k}$ as a subgraph must be $O\left(n^{2 - 1/d}\right)$. This theorem is sharp when $k=d=2$, because by design any $K_{2,2}$-free graph automatically has VC-dimension at most $2$, and there are well-known examples of such graphs with $Ω\left(n^{3/2}\right)$ edges. However, it turns out this phenomenon no longer carries through for any larger $d$. We show the following improved result: the maximum number of edges in bipartite graphs with no copies of $K_{k,k}$ and VC-dimension at most $d$ is $o(n^{2-1/d})$, for every $k \geq d \geq 3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源