论文标题
强烈的理性晶格三角形
Strongly Obtuse Rational Lattice Triangles
论文作者
论文摘要
我们对最大角度至少$ \ frac {3π} {4} $进行的有理三角形分类。当最大角度大于$ \ frac {2π} {3} $时,我们表明展开不是veech,除非它属于六个无限家庭之一。我们的方法包括基于莫尔勒和麦克马伦的作品的Mirzakhani和Wright的标准,在大多数情况下,表明展开的轨道封闭不可能有1号。
We classify rational triangles which unfold to Veech surfaces when the largest angle is at least $\frac{3π}{4}$. When the largest angle is greater than $\frac{2π}{3}$, we show that the unfolding is not Veech except possibly if it belongs to one of six infinite families. Our methods include a criterion of Mirzakhani and Wright that built on work of Möller and McMullen, and in most cases show that the orbit closure of the unfolding cannot have rank 1.