论文标题

强烈的理性晶格三角形

Strongly Obtuse Rational Lattice Triangles

论文作者

Larsen, Anne, Norton, Chaya, Zykoski, Bradley

论文摘要

我们对最大角度至少$ \ frac {3π} {4} $进行的有理三角形分类。当最大角度大于$ \ frac {2π} {3} $时,我们表明展开不是veech,除非它属于六个无限家庭之一。我们的方法包括基于莫尔勒和麦克马伦的作品的Mirzakhani和Wright的标准,在大多数情况下,表明展开的轨道封闭不可能有1号。

We classify rational triangles which unfold to Veech surfaces when the largest angle is at least $\frac{3π}{4}$. When the largest angle is greater than $\frac{2π}{3}$, we show that the unfolding is not Veech except possibly if it belongs to one of six infinite families. Our methods include a criterion of Mirzakhani and Wright that built on work of Möller and McMullen, and in most cases show that the orbit closure of the unfolding cannot have rank 1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源