论文标题

事件序列数据的视觉因果关系分析

Visual Causality Analysis of Event Sequence Data

论文作者

Jin, Zhuochen, Guo, Shunan, Chen, Nan, Weiskopf, Daniel, Gotz, David, Cao, Nan

论文摘要

因果关系对于理解复杂系统背后的机制和做出导致预期结果的决策至关重要。事件序列数据是从许多实际过程中广泛收集的,例如电子健康记录,Web ClickStreams和Financial Transactions,它们传递了反映事件类型之间因果关系的大量信息。不幸的是,从观察事件序列中恢复因果关系是具有挑战性的,因为异质和高维事件变量通常连接到相当复杂的基础事件激发机制,而这些事件激发机制很难从有限的观察结果中推断出来。许多现有的自动化因果分析技术的解释性差,无法包括足够数量的人类知识。在本文中,我们引入了一种视觉分析方法,用于在事件序列数据中恢复因果关系。我们将Granger因果关系分析算法扩展到Hawkes流程上,以将用户反馈纳入因果模型改进中。可视化系统包括一个交互式因果分析框架,该框架支持自下而上的因果探索,迭代因果验证和改进以及通过一组新型的可视化和相互作用来进行因果比较。我们报告了两种评估形式:对用户反馈机制产生的模型改进的定量评估,以及通过不同应用域中的案例研究进行定性评估,以证明系统的实用性。

Causality is crucial to understanding the mechanisms behind complex systems and making decisions that lead to intended outcomes. Event sequence data is widely collected from many real-world processes, such as electronic health records, web clickstreams, and financial transactions, which transmit a great deal of information reflecting the causal relations among event types. Unfortunately, recovering causalities from observational event sequences is challenging, as the heterogeneous and high-dimensional event variables are often connected to rather complex underlying event excitation mechanisms that are hard to infer from limited observations. Many existing automated causal analysis techniques suffer from poor explainability and fail to include an adequate amount of human knowledge. In this paper, we introduce a visual analytics method for recovering causalities in event sequence data. We extend the Granger causality analysis algorithm on Hawkes processes to incorporate user feedback into causal model refinement. The visualization system includes an interactive causal analysis framework that supports bottom-up causal exploration, iterative causal verification and refinement, and causal comparison through a set of novel visualizations and interactions. We report two forms of evaluation: a quantitative evaluation of the model improvements resulting from the user-feedback mechanism, and a qualitative evaluation through case studies in different application domains to demonstrate the usefulness of the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源