论文标题

非负RICCI曲率和逃生率差距

Nonnegative Ricci curvature and escape rate gap

论文作者

Pan, Jiayin

论文摘要

让$ m $为非负RICCI曲率的开放$ n $ n $ manifold,让$ p \在m $中。我们表明,如果$(m,p)$比某些正常数$ε(n)$要小,也就是说,最小代表$π_1(m,p)$的地理环路(m,p)$从任何有限的球中逃脱,以相对于其长度的线性较小,则几乎是$π_1(m,p)$。这概括了作者以前的工作,其中考虑了零逃逸率。

Let $M$ be an open $n$-manifold of nonnegative Ricci curvature and let $p\in M$. We show that if $(M,p)$ has escape rate less than some positive constant $ε(n)$, that is, minimal representing geodesic loops of $π_1(M,p)$ escape from any bounded balls at a small linear rate with respect to their lengths, then $π_1(M,p)$ is virtually abelian. This generalizes the author's previous work, where the zero escape rate is considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源