论文标题
迈向完全自动化的GW频段结构计算:我们可以从60.000的自我能源评估中学到什么
Towards fully automatized GW band structure calculations: What we can learn from 60.000 self-energy evaluations
论文作者
论文摘要
我们分析了一个包含370 GW带结构的数据集,该结构由二维(2D)材料的61716准粒子(QP)能量组成,涵盖14个晶体结构和52个元素。数据来自基于PAW平面的单发G $ _0 $ w $ _0 $@pbe计算全频率集成。我们研究了关键量的分布,例如QP自能校正和重新归一化因子$ z $,并探索它们对化学成分和磁状态的依赖。线性QP近似被确定为重要的误差源,并提出了以低计算成本控制和大幅度降低此误差的方案。我们分析了$ 1/n_ \ text {pw} $基集外推的可靠性,并发现其有充分的分布,狭窄的分布$ r^2 $峰值非常接近1。最后,我们探索了剪刀操作员的有效性,以结论得出的结论通常对合理的误差容忍无效。我们的工作代表着开发自动化工作流的一步,用于高通量g $ _0 $ w $ _0 $ $ _0 $ band结构计算。
We analyze a data set comprising 370 GW band structures composed of 61716 quasiparticle (QP) energies of two-dimensional (2D) materials spanning 14 crystal structures and 52 elements. The data results from PAW plane wave based one-shot G$_0$W$_0$@PBE calculations with full frequency integration. We investigate the distribution of key quantities like the QP self-energy corrections and renormalization factor $Z$ and explore their dependence on chemical composition and magnetic state. The linear QP approximation is identified as a significant error source and propose schemes for controlling and drastically reducing this error at low computational cost. We analyze the reliability of the $1/N_\text{PW}$ basis set extrapolation and find that is well-founded with narrow distributions of $r^2$ peaked very close to 1. Finally, we explore the validity of the scissors operator approximation concluding that it is generally not valid for reasonable error tolerances. Our work represents a step towards the development of automatized workflows for high-throughput G$_0$W$_0$ band structure calculations for solids.