论文标题

全息掺杂的莫特绝缘子的超导圆顶与违规

The superconducting dome for holographic doped Mott insulator with hyperscaling violation

论文作者

Cai, Wenhe, Sin, Sang-Jin

论文摘要

我们重新考虑了在温度掺杂相图上具有超导圆顶的全息模型,并对两种电荷的作用进行了修改。使用密度$ρ_{a} $的第一个类型充电使Mott绝缘子和$ρ_{b} $的第二种电荷是掺杂的额外费用,因此仅与第二个电荷一起描述Cooper Pair Condemation Couples的复杂标量。我们指出,创建圆顶的关键作用是由三个点相互作用$-cχ^{2} f_ {μν} g^{μν} $扮演的。 $ TC $随着它们的耦合而增加。我们还考虑了使用超级违规的几何形状来考虑隐藏在圆顶下的量子临界点的效果。我们的结果表明,无论是$θ$,圆顶尺寸和最佳温度随$ z $而增加,而我们的$θ$更大(较小)的圆顶,具体取决于$ z> 2 $($ z <2 $)。我们还指出,冷凝物的较大价值增加$θ$,但较小的$ z $。

We reconsider the holographic model featuring a superconducting dome on the temperature-doping phase diagram with a modified view on the role of the two charges. The first type charge with density $ρ_{A}$ make the Mott insulator, and the second one with $ρ_{B}$ is the extra charge by doping, so that the complex scalar describing the cooper pair condensation couples only with the second charge. We point out that the key role in creating the dome is played by the three point interaction $-c χ^{2} F_{μν}G^{μν}$. The $Tc$ increases with their coupling. We also consider the effect of the quantum critical point hidden under the dome using the geometry of hyperscaling violation. Our results show that the dome size and optimal temperature increase with $z$ whatever is $θ$, while we get bigger $θ$ for larger (smaller) dome depending on $z>2$ ($z<2$). We also point out that the condensate increases for bigger value of $θ$ but for smaller value of $z$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源