论文标题
二次多项式的主要值
Prime Values of Quadratic Polynomials
论文作者
论文摘要
本说明研究了任何固定的相对整数对$ f(t)= qt^2+a $的主要值,任何相对整数$ a \ geq 1 $和$ q \ geq 1 $相反的奇偶校验。对于一个大数字$ x \ geq1 $,表格$ \ sum_ {n \ leq x^{1/2},\,\,n \ text {odd}}λ(qn^2+a)\ gg qx^QX^{1/2}/2φ(q)是常数。
This note investigates the prime values of the polynomial $f(t)=qt^2+a$ for any fixed pair of relatively prime integers $ a\geq 1$ and $ q\geq 1$ of opposite parity. For a large number $x\geq1$, an asymptotic result of the form $\sum_{n\leq x^{1/2},\, n \text{ odd}}Λ(qn^2+a)\gg qx^{1/2}/2φ(q)$ is achieved for $q\ll (\log x)^b$, where $ b\geq 0 $ is a constant.