论文标题

用于重新配置智能表面辅助无线通信的数字双胞胎

A Digital Twin for Reconfigurable Intelligent Surface Assisted Wireless Communication

论文作者

Sheen, Baoling, Yang, Jin, Feng, Xianglong, Chowdhury, Md Moin Uddin

论文摘要

近年来,可重构智能表面(RIS)已成为6G的关键技术之一,其中包括大量低成本的被动元素,这些元素可以与撞击电磁波巧妙地相互作用以增强性能。但是,最佳配置大量RIS元素仍然是一个挑战。在本文中,我们为RIS辅助无线网络提供了一个新颖的数字双 - 框架,我们将其命名为环境 - 双win(Env-Twin)。 ENV-TWIN框架的目标是在各种粒度上实现最佳控制自动化。在本文中,我们提出了一个env-twin模型的一个示例,该示例是在RIS配置之间使用接收器位置的测量属性与RIS辅助无线网络中的相应可实现速率之间的映射函数,而无需显式通道估计或光束训练训练开销。一旦获悉,我们的ENV-TWIN模型可用于预测同一无线网络中任何新接收器位置的最佳RIS配置。我们利用深度学习(DL)技术来建立我们的模型并研究其性能和鲁棒性。仿真结果表明,提出的ENV-TWIN模型可以为测试接收器位置提供近乎最佳的RIS配置,该位置接近具有完美的通道知识的上限性能。我们的ENV-TWIN模型使用了不到总接收器位置的2%的培训。这个有希望的结果代表了提出的ENV-TWIN框架的巨大潜力,用于开发实用的RIS解决方案,该解决方案可以在无线网络基础架构中自动配置自身,而无需请求频道状态信息(CSI)。

Reconfigurable Intelligent Surface (RIS) has emerged as one of the key technologies for 6G in recent years, which comprise a large number of low-cost passive elements that can smartly interact with the impinging electromagnetic waves for performance enhancement. However, optimally configuring massive number of RIS elements remains a challenge. In this paper, we present a novel digital-twin framework for RIS-assisted wireless networks which we name it Environment-Twin (Env-Twin). The goal of the Env-Twin framework is to enable automation of optimal control at various granularities. In this paper, we present one example of the Env-Twin models to learn the mapping function between the RIS configuration with measured attributes for the receiver location, and the corresponding achievable rate in an RIS-assisted wireless network without involving explicit channel estimation or beam training overhead. Once learned, our Env-Twin model can be used to predict optimal RIS configuration for any new receiver locations in the same wireless network. We leveraged deep learning (DL) techniques to build our model and studied its performance and robustness. Simulation results demonstrate that the proposed Env-Twin model can recommend near-optimal RIS configurations for test receiver locations which achieved close to an upper bound performance that assumes perfect channel knowledge. Our Env-Twin model was trained using less than 2% of the total receiver locations. This promising result represents great potential of the proposed Env-Twin framework for developing a practical RIS solution where the panel can automatically configure itself without requesting channel state information (CSI) from the wireless network infrastructure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源