论文标题
通过学习的衍射光学器件单发性高光深度成像
Single-shot Hyperspectral-Depth Imaging with Learned Diffractive Optics
论文作者
论文摘要
数十年来,已经对彼此分离进行了广泛研究成像深度和光谱。最近,出现了高光谱(HS-D)成像,以通过结合两个不同的成像系统同时捕获这两个信息。一个用于深度,另一个用于频谱。在准确的同时,这种组合方法会导致形状,成本,捕获时间和对齐/注册问题的增加。在这项工作中,偏离了组合原理,我们提出了一种紧凑的单眼HS-D成像方法。我们的方法使用衍射光学元件(DOE),该点相对于深度和频谱都在变化的点扩散函数。这使我们能够从单个捕获的图像中重建光谱和深度。为此,我们开发了可区分的模拟器和基于神经网络的重建,该重建通过自动分化共同优化。为了促进学习能力,我们通过构建一个台式HS-D成像仪来呈现第一个HS-D数据集,该数据集获得高质量的地面真相。我们通过构建实验原型并实现最新的HS-D成像结果来评估我们的方法。
Imaging depth and spectrum have been extensively studied in isolation from each other for decades. Recently, hyperspectral-depth (HS-D) imaging emerges to capture both information simultaneously by combining two different imaging systems; one for depth, the other for spectrum. While being accurate, this combinational approach induces increased form factor, cost, capture time, and alignment/registration problems. In this work, departing from the combinational principle, we propose a compact single-shot monocular HS-D imaging method. Our method uses a diffractive optical element (DOE), the point spread function of which changes with respect to both depth and spectrum. This enables us to reconstruct spectrum and depth from a single captured image. To this end, we develop a differentiable simulator and a neural-network-based reconstruction that are jointly optimized via automatic differentiation. To facilitate learning the DOE, we present a first HS-D dataset by building a benchtop HS-D imager that acquires high-quality ground truth. We evaluate our method with synthetic and real experiments by building an experimental prototype and achieve state-of-the-art HS-D imaging results.