论文标题
SINC的方式:一种快速准确的傅立叶定价方法
The SINC way: A fast and accurate approach to Fourier pricing
论文作者
论文摘要
本文的目的是研究Cherubini等人中我们中的一个(PR)概述的方法。 (2009年)计算期权价格。我们将其命名为SINC方法。 Fang and Osterlee(2009)的COS方法利用了截短密度的傅立叶cosine膨胀,而SINC方法基于对具有有界支持的功能进行重新访问的Shannon采样定理。我们提供了早期推导中缺少的几个结果:i)当支持增长和傅立叶频率增加时,SINC公式与正确期权价格的融合的严格证明; ii)准备实施公式,以供投票,现金或全资资产或全资资产选择; iii)与几种log-price模型的COS公式进行系统的比较; iv)针对其他快速傅立叶规格的数值挑战,例如Carr和Madan(1999)和Lewis(2000); v)在Jaisson和Rosenbaum的Rough Heston模型(2015)下进行了广泛的定价练习; vi)公式以数字评估截短密度的力矩。 SINC方法的优势很多。与基准方法相比,SINC提供了最准确,最快的定价计算。该方法自然会通过快速的傅立叶技术同时促进笑容,从而促进快速校准,从而使自己以笑容的价格定价。定价只需要在傅立叶空间中求奇数时刻。此手稿的先前版本带有标题“ Rough Heston:the Sinc Way”。
The goal of this paper is to investigate the method outlined by one of us (PR) in Cherubini et al. (2009) to compute option prices. We name it the SINC approach. While the COS method by Fang and Osterlee (2009) leverages the Fourier-cosine expansion of truncated densities, the SINC approach builds on the Shannon Sampling Theorem revisited for functions with bounded support. We provide several results which were missing in the early derivation: i) a rigorous proof of the convergence of the SINC formula to the correct option price when the support grows and the number of Fourier frequencies increases; ii) ready to implement formulas for put, Cash-or-Nothing, and Asset-or-Nothing options; iii) a systematic comparison with the COS formula for several log-price models; iv) a numerical challenge against alternative Fast Fourier specifications, such as Carr and Madan (1999) and Lewis (2000); v) an extensive pricing exercise under the rough Heston model of Jaisson and Rosenbaum (2015); vi) formulas to evaluate numerically the moments of a truncated density. The advantages of the SINC approach are numerous. When compared to benchmark methodologies, SINC provides the most accurate and fast pricing computation. The method naturally lends itself to price all options in a smile concurrently by means of Fast Fourier techniques, boosting fast calibration. Pricing requires to resort only to odd moments in the Fourier space. A previous version of this manuscript circulated with the title `Rough Heston: The SINC way'.