论文标题

通过数据驱动的小波发现多尺度和自相似结构

Discovering multiscale and self-similar structure with data-driven wavelets

论文作者

Floryan, Daniel, Graham, Michael D.

论文摘要

科学和工程学中的许多材料,过程和结构在多个时间和/或空间的多个尺度上都具有重要的特征。例子包括生物组织,活性物质,海洋,网络和图像。明确提取,描述和定义此类功能是困难的任务,至少部分是因为每个系统都有一组独特的功能。在这里,我们介绍了一种分析方法,该方法鉴于一组观察结果,发现了在规模和空间中定位的结构的能量层次结构。我们将最终的基础向量称为“数据驱动的小波分解”。我们表明,这种分解反映了其作用的数据集的固有结构,无论是没有结构,结构,由单个尺度支配,还是量表层次结构上的结构。特别是,当应用于湍流时---高维,非线性,多尺度过程----------揭示了在广泛的空间尺度上的自相似结构,为湍流的百年历史现象学图提供了直接的,无模型的证据。这种方法是表征多尺度系统中局部层次结构的起点,我们可以将其视为这些系统的基础。

Many materials, processes, and structures in science and engineering have important features at multiple scales of time and/or space; examples include biological tissues, active matter, oceans, networks, and images. Explicitly extracting, describing, and defining such features are difficult tasks, at least in part because each system has a unique set of features. Here, we introduce an analysis method that, given a set of observations, discovers an energetic hierarchy of structures localized in scale and space. We call the resulting basis vectors a "data-driven wavelet decomposition". We show that this decomposition reflects the inherent structure of the dataset it acts on, whether it has no structure, structure dominated by a single scale, or structure on a hierarchy of scales. In particular, when applied to turbulence---a high-dimensional, nonlinear, multiscale process---the method reveals self-similar structure over a wide range of spatial scales, providing direct, model-free evidence for a century-old phenomenological picture of turbulence. This approach is a starting point for the characterization of localized hierarchical structures in multiscale systems, which we may think of as the building blocks of these systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源