论文标题
Gibbons-Hawking Ansatz广义Kähler几何形状
The Gibbons-Hawking ansatz in generalized Kähler geometry
论文作者
论文摘要
我们推导了一个局部的ANSATZ,用于具有非化学泊松结构的广义Kähler表面和Biholomormormormorphic $ s^1 $动作,该动作概括了经典的Gibbons-Hawking Ansatz,用于不变的Hyperkähller歧管,并允许选择一个任意功能。通过施加广义的kähler-ricci soliton方程,或等效地等于IIB字符串理论的方程,构造变得刚性,我们将所有完整的解决方案与最小可能的对称组进行了分类。
We derive a local ansatz for generalized Kähler surfaces with nondegenerate Poisson structure and a biholomorphic $S^1$ action which generalizes the classic Gibbons-Hawking ansatz for invariant hyperKähler manifolds, and allows for the choice of one arbitrary function. By imposing the generalized Kähler-Ricci soliton equation, or equivalently the equations of type IIB string theory, the construction becomes rigid, and we classify all complete solutions with the smallest possible symmetry group.