论文标题

开放设定的对抗防御

Open-set Adversarial Defense

论文作者

Shao, Rui, Perera, Pramuditha, Yuen, Pong C., Patel, Vishal M.

论文摘要

开放式认可和对抗性国防研究深度学习的两个关键方面对于现实世界的部署至关重要。开放式识别的目的是在测试过程中识别开放式类别的样本,而对抗防御的目的是捍卫网络免受无法察觉的对抗性扰动的图像。在本文中,我们表明开放式识别系统容易受到对抗性攻击的影响。此外,我们表明,在已知类别中训练的对抗性防御机制并不能很好地推广到开放式样品。在这一观察结果的激励下,我们强调需要开放式的对抗防御(OSAD)机制。本文建议开放式防御网络(OSDN)作为解决OSAD问题的解决方案。提出的网络使用编码器,其中具有功能降解层,并与分类器相结合,以学习无噪声潜在特征表示。采用了两种技术来获得一个信息丰富的潜在特征空间,以改善开放式性能。首先,使用解码器来确保可以从获得的潜在特征重建干净的图像。然后,使用自学来确保潜在功能足以完成辅助任务。我们介绍了一个测试协议,以评估OSAD性能并显示多个对象分类数据集中提出方法的有效性。该方法的实现代码可在以下网址获得:https://github.com/rshaojimmy/eccv2020-osad。

Open-set recognition and adversarial defense study two key aspects of deep learning that are vital for real-world deployment. The objective of open-set recognition is to identify samples from open-set classes during testing, while adversarial defense aims to defend the network against images with imperceptible adversarial perturbations. In this paper, we show that open-set recognition systems are vulnerable to adversarial attacks. Furthermore, we show that adversarial defense mechanisms trained on known classes do not generalize well to open-set samples. Motivated by this observation, we emphasize the need of an Open-Set Adversarial Defense (OSAD) mechanism. This paper proposes an Open-Set Defense Network (OSDN) as a solution to the OSAD problem. The proposed network uses an encoder with feature-denoising layers coupled with a classifier to learn a noise-free latent feature representation. Two techniques are employed to obtain an informative latent feature space with the objective of improving open-set performance. First, a decoder is used to ensure that clean images can be reconstructed from the obtained latent features. Then, self-supervision is used to ensure that the latent features are informative enough to carry out an auxiliary task. We introduce a testing protocol to evaluate OSAD performance and show the effectiveness of the proposed method in multiple object classification datasets. The implementation code of the proposed method is available at: https://github.com/rshaojimmy/ECCV2020-OSAD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源